aboutsummaryrefslogtreecommitdiff
path: root/src/utils/entropy_decoder.cc
blob: 3d97e6909b6847a0c8669eed430a0c7526831ea8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "src/utils/entropy_decoder.h"

#include <cassert>
#include <cstring>

#include "src/utils/common.h"
#include "src/utils/compiler_attributes.h"
#include "src/utils/constants.h"
#include "src/utils/cpu.h"

#if defined(__ARM_NEON__) || defined(__aarch64__) || \
    (defined(_MSC_VER) && defined(_M_ARM))
#define LIBGAV1_ENTROPY_DECODER_ENABLE_NEON 1
#else
#define LIBGAV1_ENTROPY_DECODER_ENABLE_NEON 0
#endif

#if LIBGAV1_ENTROPY_DECODER_ENABLE_NEON
#include <arm_neon.h>
#endif

#if defined(__SSE2__) || defined(LIBGAV1_X86_MSVC)
#define LIBGAV1_ENTROPY_DECODER_ENABLE_SSE2 1
#else
#define LIBGAV1_ENTROPY_DECODER_ENABLE_SSE2 0
#endif

#if LIBGAV1_ENTROPY_DECODER_ENABLE_SSE2
#include <emmintrin.h>
#endif

namespace libgav1 {
namespace {

constexpr uint32_t kReadBitMask = ~255;
constexpr int kCdfPrecision = 6;
constexpr int kMinimumProbabilityPerSymbol = 4;

// This function computes the "cur" variable as specified inside the do-while
// loop in Section 8.2.6 of the spec. This function is monotonically
// decreasing as the values of index increases (note that the |cdf| array is
// sorted in decreasing order).
uint32_t ScaleCdf(uint32_t values_in_range_shifted, const uint16_t* const cdf,
                  int index, int symbol_count) {
  return ((values_in_range_shifted * (cdf[index] >> kCdfPrecision)) >> 1) +
         (kMinimumProbabilityPerSymbol * (symbol_count - index));
}

void UpdateCdf(uint16_t* LIBGAV1_RESTRICT const cdf, const int symbol_count,
               const int symbol) {
  const uint16_t count = cdf[symbol_count];
  // rate is computed in the spec as:
  //  3 + ( cdf[N] > 15 ) + ( cdf[N] > 31 ) + Min(FloorLog2(N), 2)
  // In this case cdf[N] is |count|.
  // Min(FloorLog2(N), 2) is 1 for symbol_count == {2, 3} and 2 for all
  // symbol_count > 3. So the equation becomes:
  //  4 + (count > 15) + (count > 31) + (symbol_count > 3).
  // Note that the largest value for count is 32 (it is not incremented beyond
  // 32). So using that information:
  //  count >> 4 is 0 for count from 0 to 15.
  //  count >> 4 is 1 for count from 16 to 31.
  //  count >> 4 is 2 for count == 31.
  // Now, the equation becomes:
  //  4 + (count >> 4) + (symbol_count > 3).
  // Since (count >> 4) can only be 0 or 1 or 2, the addition could be replaced
  // with bitwise or:
  //  (4 | (count >> 4)) + (symbol_count > 3).
  // but using addition will allow the compiler to eliminate an operation when
  // symbol_count is known and this function is inlined.
  const int rate = (count >> 4) + 4 + static_cast<int>(symbol_count > 3);
  // Hints for further optimizations:
  //
  // 1. clang can vectorize this for loop with width 4, even though the loop
  // contains an if-else statement. Therefore, it may be advantageous to use
  // "i < symbol_count" as the loop condition when symbol_count is 8, 12, or 16
  // (a multiple of 4 that's not too small).
  //
  // 2. The for loop can be rewritten in the following form, which would enable
  // clang to vectorize the loop with width 8:
  //
  //   const int rounding = (1 << rate) - 1;
  //   for (int i = 0; i < symbol_count - 1; ++i) {
  //     const uint16_t a = (i < symbol) ? kCdfMaxProbability : rounding;
  //     cdf[i] += static_cast<int16_t>(a - cdf[i]) >> rate;
  //   }
  //
  // The subtraction (a - cdf[i]) relies on the overflow semantics of unsigned
  // integer arithmetic. The result of the unsigned subtraction is cast to a
  // signed integer and right-shifted. This requires the right shift of a
  // signed integer be an arithmetic shift, which is true for clang, gcc, and
  // Visual C++.
  assert(symbol_count - 1 > 0);
  int i = 0;
  do {
    if (i < symbol) {
      cdf[i] += (kCdfMaxProbability - cdf[i]) >> rate;
    } else {
      cdf[i] -= cdf[i] >> rate;
    }
  } while (++i < symbol_count - 1);
  cdf[symbol_count] += static_cast<uint16_t>(count < 32);
}

// Define the UpdateCdfN functions. UpdateCdfN is a specialized implementation
// of UpdateCdf based on the fact that symbol_count == N. UpdateCdfN uses the
// SIMD instruction sets if available.

#if LIBGAV1_ENTROPY_DECODER_ENABLE_NEON

// The UpdateCdf() method contains the following for loop:
//
//   for (int i = 0; i < symbol_count - 1; ++i) {
//     if (i < symbol) {
//       cdf[i] += (kCdfMaxProbability - cdf[i]) >> rate;
//     } else {
//       cdf[i] -= cdf[i] >> rate;
//     }
//   }
//
// It can be rewritten in the following two forms, which are amenable to SIMD
// implementations:
//
//   const int rounding = (1 << rate) - 1;
//   for (int i = 0; i < symbol_count - 1; ++i) {
//     const uint16_t a = (i < symbol) ? kCdfMaxProbability : rounding;
//     cdf[i] += static_cast<int16_t>(a - cdf[i]) >> rate;
//   }
//
// or:
//
//   const int rounding = (1 << rate) - 1;
//   for (int i = 0; i < symbol_count - 1; ++i) {
//     const uint16_t a = (i < symbol) ? (kCdfMaxProbability - rounding) : 0;
//     cdf[i] -= static_cast<int16_t>(cdf[i] - a) >> rate;
//   }
//
// The following ARM NEON implementations use a modified version of the first
// form, using the comparison mask and unsigned rollover to avoid the need to
// calculate rounding.
//
// The cdf array has symbol_count + 1 elements. The first symbol_count elements
// are the CDF. The last element is a count that is initialized to 0 and may
// grow up to 32. The for loop in UpdateCdf updates the CDF in the array. Since
// cdf[symbol_count - 1] is always 0, the for loop does not update
// cdf[symbol_count - 1]. However, it would be correct to have the for loop
// update cdf[symbol_count - 1] anyway: since symbol_count - 1 >= symbol, the
// for loop would take the else branch when i is symbol_count - 1:
//      cdf[i] -= cdf[i] >> rate;
// Since cdf[symbol_count - 1] is 0, cdf[symbol_count - 1] would still be 0
// after the update. The ARM NEON implementations take advantage of this in the
// following two cases:
// 1. When symbol_count is 8 or 16, the vectorized code updates the first
//    symbol_count elements in the array.
// 2. When symbol_count is 7, the vectorized code updates all the 8 elements in
//    the cdf array. Since an invalid CDF value is written into cdf[7], the
//    count in cdf[7] needs to be fixed up after the vectorized code.

void UpdateCdf5(uint16_t* LIBGAV1_RESTRICT const cdf, const int symbol) {
  uint16x4_t cdf_vec = vld1_u16(cdf);
  const uint16_t count = cdf[5];
  const int rate = (count >> 4) + 5;
  const uint16x4_t cdf_max_probability = vdup_n_u16(kCdfMaxProbability);
  const uint16x4_t index = vcreate_u16(0x0003000200010000);
  const uint16x4_t symbol_vec = vdup_n_u16(symbol);
  const uint16x4_t mask = vcge_u16(index, symbol_vec);
  // i < symbol: 32768, i >= symbol: 65535.
  const uint16x4_t a = vorr_u16(mask, cdf_max_probability);
  // i < symbol: 32768 - cdf, i >= symbol: 65535 - cdf.
  const int16x4_t diff = vreinterpret_s16_u16(vsub_u16(a, cdf_vec));
  // i < symbol: cdf - 0, i >= symbol: cdf - 65535.
  const uint16x4_t cdf_offset = vsub_u16(cdf_vec, mask);
  const int16x4_t negative_rate = vdup_n_s16(-rate);
  // i < symbol: (32768 - cdf) >> rate, i >= symbol: (65535 (-1) - cdf) >> rate.
  const uint16x4_t delta = vreinterpret_u16_s16(vshl_s16(diff, negative_rate));
  // i < symbol: (cdf - 0) + ((32768 - cdf) >> rate).
  // i >= symbol: (cdf - 65535) + ((65535 - cdf) >> rate).
  cdf_vec = vadd_u16(cdf_offset, delta);
  vst1_u16(cdf, cdf_vec);
  cdf[5] = count + static_cast<uint16_t>(count < 32);
}

// This version works for |symbol_count| = 7, 8, or 9.
// See UpdateCdf5 for implementation details.
template <int symbol_count>
void UpdateCdf7To9(uint16_t* LIBGAV1_RESTRICT const cdf, const int symbol) {
  static_assert(symbol_count >= 7 && symbol_count <= 9, "");
  uint16x8_t cdf_vec = vld1q_u16(cdf);
  const uint16_t count = cdf[symbol_count];
  const int rate = (count >> 4) + 5;
  const uint16x8_t cdf_max_probability = vdupq_n_u16(kCdfMaxProbability);
  const uint16x8_t index = vcombine_u16(vcreate_u16(0x0003000200010000),
                                        vcreate_u16(0x0007000600050004));
  const uint16x8_t symbol_vec = vdupq_n_u16(symbol);
  const uint16x8_t mask = vcgeq_u16(index, symbol_vec);
  const uint16x8_t a = vorrq_u16(mask, cdf_max_probability);
  const int16x8_t diff = vreinterpretq_s16_u16(vsubq_u16(a, cdf_vec));
  const uint16x8_t cdf_offset = vsubq_u16(cdf_vec, mask);
  const int16x8_t negative_rate = vdupq_n_s16(-rate);
  const uint16x8_t delta =
      vreinterpretq_u16_s16(vshlq_s16(diff, negative_rate));
  cdf_vec = vaddq_u16(cdf_offset, delta);
  vst1q_u16(cdf, cdf_vec);
  cdf[symbol_count] = count + static_cast<uint16_t>(count < 32);
}

void UpdateCdf7(uint16_t* const cdf, const int symbol) {
  UpdateCdf7To9<7>(cdf, symbol);
}

void UpdateCdf8(uint16_t* const cdf, const int symbol) {
  UpdateCdf7To9<8>(cdf, symbol);
}

void UpdateCdf9(uint16_t* const cdf, const int symbol) {
  UpdateCdf7To9<9>(cdf, symbol);
}

// See UpdateCdf5 for implementation details.
void UpdateCdf11(uint16_t* LIBGAV1_RESTRICT const cdf, const int symbol) {
  uint16x8_t cdf_vec = vld1q_u16(cdf + 2);
  const uint16_t count = cdf[11];
  cdf[11] = count + static_cast<uint16_t>(count < 32);
  const int rate = (count >> 4) + 5;
  if (symbol > 1) {
    cdf[0] += (kCdfMaxProbability - cdf[0]) >> rate;
    cdf[1] += (kCdfMaxProbability - cdf[1]) >> rate;
    const uint16x8_t cdf_max_probability = vdupq_n_u16(kCdfMaxProbability);
    const uint16x8_t symbol_vec = vdupq_n_u16(symbol);
    const int16x8_t negative_rate = vdupq_n_s16(-rate);
    const uint16x8_t index = vcombine_u16(vcreate_u16(0x0005000400030002),
                                          vcreate_u16(0x0009000800070006));
    const uint16x8_t mask = vcgeq_u16(index, symbol_vec);
    const uint16x8_t a = vorrq_u16(mask, cdf_max_probability);
    const int16x8_t diff = vreinterpretq_s16_u16(vsubq_u16(a, cdf_vec));
    const uint16x8_t cdf_offset = vsubq_u16(cdf_vec, mask);
    const uint16x8_t delta =
        vreinterpretq_u16_s16(vshlq_s16(diff, negative_rate));
    cdf_vec = vaddq_u16(cdf_offset, delta);
    vst1q_u16(cdf + 2, cdf_vec);
  } else {
    if (symbol != 0) {
      cdf[0] += (kCdfMaxProbability - cdf[0]) >> rate;
      cdf[1] -= cdf[1] >> rate;
    } else {
      cdf[0] -= cdf[0] >> rate;
      cdf[1] -= cdf[1] >> rate;
    }
    const int16x8_t negative_rate = vdupq_n_s16(-rate);
    const uint16x8_t delta = vshlq_u16(cdf_vec, negative_rate);
    cdf_vec = vsubq_u16(cdf_vec, delta);
    vst1q_u16(cdf + 2, cdf_vec);
  }
}

// See UpdateCdf5 for implementation details.
void UpdateCdf13(uint16_t* LIBGAV1_RESTRICT const cdf, const int symbol) {
  uint16x8_t cdf_vec0 = vld1q_u16(cdf);
  uint16x8_t cdf_vec1 = vld1q_u16(cdf + 4);
  const uint16_t count = cdf[13];
  const int rate = (count >> 4) + 5;
  const uint16x8_t cdf_max_probability = vdupq_n_u16(kCdfMaxProbability);
  const uint16x8_t symbol_vec = vdupq_n_u16(symbol);
  const int16x8_t negative_rate = vdupq_n_s16(-rate);

  uint16x8_t index = vcombine_u16(vcreate_u16(0x0003000200010000),
                                  vcreate_u16(0x0007000600050004));
  uint16x8_t mask = vcgeq_u16(index, symbol_vec);
  uint16x8_t a = vorrq_u16(mask, cdf_max_probability);
  int16x8_t diff = vreinterpretq_s16_u16(vsubq_u16(a, cdf_vec0));
  uint16x8_t cdf_offset = vsubq_u16(cdf_vec0, mask);
  uint16x8_t delta = vreinterpretq_u16_s16(vshlq_s16(diff, negative_rate));
  cdf_vec0 = vaddq_u16(cdf_offset, delta);
  vst1q_u16(cdf, cdf_vec0);

  index = vcombine_u16(vcreate_u16(0x0007000600050004),
                       vcreate_u16(0x000b000a00090008));
  mask = vcgeq_u16(index, symbol_vec);
  a = vorrq_u16(mask, cdf_max_probability);
  diff = vreinterpretq_s16_u16(vsubq_u16(a, cdf_vec1));
  cdf_offset = vsubq_u16(cdf_vec1, mask);
  delta = vreinterpretq_u16_s16(vshlq_s16(diff, negative_rate));
  cdf_vec1 = vaddq_u16(cdf_offset, delta);
  vst1q_u16(cdf + 4, cdf_vec1);

  cdf[13] = count + static_cast<uint16_t>(count < 32);
}

// See UpdateCdf5 for implementation details.
void UpdateCdf16(uint16_t* LIBGAV1_RESTRICT const cdf, const int symbol) {
  uint16x8_t cdf_vec = vld1q_u16(cdf);
  const uint16_t count = cdf[16];
  const int rate = (count >> 4) + 5;
  const uint16x8_t cdf_max_probability = vdupq_n_u16(kCdfMaxProbability);
  const uint16x8_t symbol_vec = vdupq_n_u16(symbol);
  const int16x8_t negative_rate = vdupq_n_s16(-rate);

  uint16x8_t index = vcombine_u16(vcreate_u16(0x0003000200010000),
                                  vcreate_u16(0x0007000600050004));
  uint16x8_t mask = vcgeq_u16(index, symbol_vec);
  uint16x8_t a = vorrq_u16(mask, cdf_max_probability);
  int16x8_t diff = vreinterpretq_s16_u16(vsubq_u16(a, cdf_vec));
  uint16x8_t cdf_offset = vsubq_u16(cdf_vec, mask);
  uint16x8_t delta = vreinterpretq_u16_s16(vshlq_s16(diff, negative_rate));
  cdf_vec = vaddq_u16(cdf_offset, delta);
  vst1q_u16(cdf, cdf_vec);

  cdf_vec = vld1q_u16(cdf + 8);
  index = vcombine_u16(vcreate_u16(0x000b000a00090008),
                       vcreate_u16(0x000f000e000d000c));
  mask = vcgeq_u16(index, symbol_vec);
  a = vorrq_u16(mask, cdf_max_probability);
  diff = vreinterpretq_s16_u16(vsubq_u16(a, cdf_vec));
  cdf_offset = vsubq_u16(cdf_vec, mask);
  delta = vreinterpretq_u16_s16(vshlq_s16(diff, negative_rate));
  cdf_vec = vaddq_u16(cdf_offset, delta);
  vst1q_u16(cdf + 8, cdf_vec);

  cdf[16] = count + static_cast<uint16_t>(count < 32);
}

#else  // !LIBGAV1_ENTROPY_DECODER_ENABLE_NEON

#if LIBGAV1_ENTROPY_DECODER_ENABLE_SSE2

inline __m128i LoadLo8(const void* a) {
  return _mm_loadl_epi64(static_cast<const __m128i*>(a));
}

inline __m128i LoadUnaligned16(const void* a) {
  return _mm_loadu_si128(static_cast<const __m128i*>(a));
}

inline void StoreLo8(void* a, const __m128i v) {
  _mm_storel_epi64(static_cast<__m128i*>(a), v);
}

inline void StoreUnaligned16(void* a, const __m128i v) {
  _mm_storeu_si128(static_cast<__m128i*>(a), v);
}

void UpdateCdf5(uint16_t* LIBGAV1_RESTRICT const cdf, const int symbol) {
  __m128i cdf_vec = LoadLo8(cdf);
  const uint16_t count = cdf[5];
  const int rate = (count >> 4) + 5;
  const __m128i cdf_max_probability =
      _mm_shufflelo_epi16(_mm_cvtsi32_si128(kCdfMaxProbability), 0);
  const __m128i index = _mm_set_epi32(0x0, 0x0, 0x00040003, 0x00020001);
  const __m128i symbol_vec = _mm_shufflelo_epi16(_mm_cvtsi32_si128(symbol), 0);
  // i >= symbol.
  const __m128i mask = _mm_cmpgt_epi16(index, symbol_vec);
  // i < symbol: 32768, i >= symbol: 65535.
  const __m128i a = _mm_or_si128(mask, cdf_max_probability);
  // i < symbol: 32768 - cdf, i >= symbol: 65535 - cdf.
  const __m128i diff = _mm_sub_epi16(a, cdf_vec);
  // i < symbol: cdf - 0, i >= symbol: cdf - 65535.
  const __m128i cdf_offset = _mm_sub_epi16(cdf_vec, mask);
  // i < symbol: (32768 - cdf) >> rate, i >= symbol: (65535 (-1) - cdf) >> rate.
  const __m128i delta = _mm_sra_epi16(diff, _mm_cvtsi32_si128(rate));
  // i < symbol: (cdf - 0) + ((32768 - cdf) >> rate).
  // i >= symbol: (cdf - 65535) + ((65535 - cdf) >> rate).
  cdf_vec = _mm_add_epi16(cdf_offset, delta);
  StoreLo8(cdf, cdf_vec);
  cdf[5] = count + static_cast<uint16_t>(count < 32);
}

// This version works for |symbol_count| = 7, 8, or 9.
// See UpdateCdf5 for implementation details.
template <int symbol_count>
void UpdateCdf7To9(uint16_t* LIBGAV1_RESTRICT const cdf, const int symbol) {
  static_assert(symbol_count >= 7 && symbol_count <= 9, "");
  __m128i cdf_vec = LoadUnaligned16(cdf);
  const uint16_t count = cdf[symbol_count];
  const int rate = (count >> 4) + 5;
  const __m128i cdf_max_probability =
      _mm_set1_epi16(static_cast<int16_t>(kCdfMaxProbability));
  const __m128i index =
      _mm_set_epi32(0x00080007, 0x00060005, 0x00040003, 0x00020001);
  const __m128i symbol_vec = _mm_set1_epi16(static_cast<int16_t>(symbol));
  const __m128i mask = _mm_cmpgt_epi16(index, symbol_vec);
  const __m128i a = _mm_or_si128(mask, cdf_max_probability);
  const __m128i diff = _mm_sub_epi16(a, cdf_vec);
  const __m128i cdf_offset = _mm_sub_epi16(cdf_vec, mask);
  const __m128i delta = _mm_sra_epi16(diff, _mm_cvtsi32_si128(rate));
  cdf_vec = _mm_add_epi16(cdf_offset, delta);
  StoreUnaligned16(cdf, cdf_vec);
  cdf[symbol_count] = count + static_cast<uint16_t>(count < 32);
}

void UpdateCdf7(uint16_t* const cdf, const int symbol) {
  UpdateCdf7To9<7>(cdf, symbol);
}

void UpdateCdf8(uint16_t* const cdf, const int symbol) {
  UpdateCdf7To9<8>(cdf, symbol);
}

void UpdateCdf9(uint16_t* const cdf, const int symbol) {
  UpdateCdf7To9<9>(cdf, symbol);
}

// See UpdateCdf5 for implementation details.
void UpdateCdf11(uint16_t* LIBGAV1_RESTRICT const cdf, const int symbol) {
  __m128i cdf_vec = LoadUnaligned16(cdf + 2);
  const uint16_t count = cdf[11];
  cdf[11] = count + static_cast<uint16_t>(count < 32);
  const int rate = (count >> 4) + 5;
  if (symbol > 1) {
    cdf[0] += (kCdfMaxProbability - cdf[0]) >> rate;
    cdf[1] += (kCdfMaxProbability - cdf[1]) >> rate;
    const __m128i cdf_max_probability =
        _mm_set1_epi16(static_cast<int16_t>(kCdfMaxProbability));
    const __m128i index =
        _mm_set_epi32(0x000a0009, 0x00080007, 0x00060005, 0x00040003);
    const __m128i symbol_vec = _mm_set1_epi16(static_cast<int16_t>(symbol));
    const __m128i mask = _mm_cmpgt_epi16(index, symbol_vec);
    const __m128i a = _mm_or_si128(mask, cdf_max_probability);
    const __m128i diff = _mm_sub_epi16(a, cdf_vec);
    const __m128i cdf_offset = _mm_sub_epi16(cdf_vec, mask);
    const __m128i delta = _mm_sra_epi16(diff, _mm_cvtsi32_si128(rate));
    cdf_vec = _mm_add_epi16(cdf_offset, delta);
    StoreUnaligned16(cdf + 2, cdf_vec);
  } else {
    if (symbol != 0) {
      cdf[0] += (kCdfMaxProbability - cdf[0]) >> rate;
      cdf[1] -= cdf[1] >> rate;
    } else {
      cdf[0] -= cdf[0] >> rate;
      cdf[1] -= cdf[1] >> rate;
    }
    const __m128i delta = _mm_sra_epi16(cdf_vec, _mm_cvtsi32_si128(rate));
    cdf_vec = _mm_sub_epi16(cdf_vec, delta);
    StoreUnaligned16(cdf + 2, cdf_vec);
  }
}

// See UpdateCdf5 for implementation details.
void UpdateCdf13(uint16_t* LIBGAV1_RESTRICT const cdf, const int symbol) {
  __m128i cdf_vec0 = LoadLo8(cdf);
  __m128i cdf_vec1 = LoadUnaligned16(cdf + 4);
  const uint16_t count = cdf[13];
  const int rate = (count >> 4) + 5;
  const __m128i cdf_max_probability =
      _mm_set1_epi16(static_cast<int16_t>(kCdfMaxProbability));
  const __m128i symbol_vec = _mm_set1_epi16(static_cast<int16_t>(symbol));

  const __m128i index = _mm_set_epi32(0x0, 0x0, 0x00040003, 0x00020001);
  const __m128i mask = _mm_cmpgt_epi16(index, symbol_vec);
  const __m128i a = _mm_or_si128(mask, cdf_max_probability);
  const __m128i diff = _mm_sub_epi16(a, cdf_vec0);
  const __m128i cdf_offset = _mm_sub_epi16(cdf_vec0, mask);
  const __m128i delta = _mm_sra_epi16(diff, _mm_cvtsi32_si128(rate));
  cdf_vec0 = _mm_add_epi16(cdf_offset, delta);
  StoreLo8(cdf, cdf_vec0);

  const __m128i index1 =
      _mm_set_epi32(0x000c000b, 0x000a0009, 0x00080007, 0x00060005);
  const __m128i mask1 = _mm_cmpgt_epi16(index1, symbol_vec);
  const __m128i a1 = _mm_or_si128(mask1, cdf_max_probability);
  const __m128i diff1 = _mm_sub_epi16(a1, cdf_vec1);
  const __m128i cdf_offset1 = _mm_sub_epi16(cdf_vec1, mask1);
  const __m128i delta1 = _mm_sra_epi16(diff1, _mm_cvtsi32_si128(rate));
  cdf_vec1 = _mm_add_epi16(cdf_offset1, delta1);
  StoreUnaligned16(cdf + 4, cdf_vec1);

  cdf[13] = count + static_cast<uint16_t>(count < 32);
}

void UpdateCdf16(uint16_t* LIBGAV1_RESTRICT const cdf, const int symbol) {
  __m128i cdf_vec0 = LoadUnaligned16(cdf);
  const uint16_t count = cdf[16];
  const int rate = (count >> 4) + 5;
  const __m128i cdf_max_probability =
      _mm_set1_epi16(static_cast<int16_t>(kCdfMaxProbability));
  const __m128i symbol_vec = _mm_set1_epi16(static_cast<int16_t>(symbol));

  const __m128i index =
      _mm_set_epi32(0x00080007, 0x00060005, 0x00040003, 0x00020001);
  const __m128i mask = _mm_cmpgt_epi16(index, symbol_vec);
  const __m128i a = _mm_or_si128(mask, cdf_max_probability);
  const __m128i diff = _mm_sub_epi16(a, cdf_vec0);
  const __m128i cdf_offset = _mm_sub_epi16(cdf_vec0, mask);
  const __m128i delta = _mm_sra_epi16(diff, _mm_cvtsi32_si128(rate));
  cdf_vec0 = _mm_add_epi16(cdf_offset, delta);
  StoreUnaligned16(cdf, cdf_vec0);

  __m128i cdf_vec1 = LoadUnaligned16(cdf + 8);
  const __m128i index1 =
      _mm_set_epi32(0x0010000f, 0x000e000d, 0x000c000b, 0x000a0009);
  const __m128i mask1 = _mm_cmpgt_epi16(index1, symbol_vec);
  const __m128i a1 = _mm_or_si128(mask1, cdf_max_probability);
  const __m128i diff1 = _mm_sub_epi16(a1, cdf_vec1);
  const __m128i cdf_offset1 = _mm_sub_epi16(cdf_vec1, mask1);
  const __m128i delta1 = _mm_sra_epi16(diff1, _mm_cvtsi32_si128(rate));
  cdf_vec1 = _mm_add_epi16(cdf_offset1, delta1);
  StoreUnaligned16(cdf + 8, cdf_vec1);

  cdf[16] = count + static_cast<uint16_t>(count < 32);
}

#else  // !LIBGAV1_ENTROPY_DECODER_ENABLE_SSE2

void UpdateCdf5(uint16_t* const cdf, const int symbol) {
  UpdateCdf(cdf, 5, symbol);
}

void UpdateCdf7(uint16_t* const cdf, const int symbol) {
  UpdateCdf(cdf, 7, symbol);
}

void UpdateCdf8(uint16_t* const cdf, const int symbol) {
  UpdateCdf(cdf, 8, symbol);
}

void UpdateCdf9(uint16_t* const cdf, const int symbol) {
  UpdateCdf(cdf, 9, symbol);
}

void UpdateCdf11(uint16_t* const cdf, const int symbol) {
  UpdateCdf(cdf, 11, symbol);
}

void UpdateCdf13(uint16_t* const cdf, const int symbol) {
  UpdateCdf(cdf, 13, symbol);
}

void UpdateCdf16(uint16_t* const cdf, const int symbol) {
  UpdateCdf(cdf, 16, symbol);
}

#endif  // LIBGAV1_ENTROPY_DECODER_ENABLE_SSE2
#endif  // LIBGAV1_ENTROPY_DECODER_ENABLE_NEON

inline EntropyDecoder::WindowSize HostToBigEndian(
    const EntropyDecoder::WindowSize x) {
  static_assert(sizeof(x) == 4 || sizeof(x) == 8, "");
#if defined(__GNUC__)
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
  return (sizeof(x) == 8) ? __builtin_bswap64(x) : __builtin_bswap32(x);
#else
  return x;
#endif
#elif defined(_WIN32)
  // Note Windows targets are assumed to be little endian.
  return static_cast<EntropyDecoder::WindowSize>(
      (sizeof(x) == 8) ? _byteswap_uint64(static_cast<unsigned __int64>(x))
                       : _byteswap_ulong(static_cast<unsigned long>(x)));
#else
#error Unknown compiler!
#endif  // defined(__GNUC__)
}

}  // namespace

#if !LIBGAV1_CXX17
constexpr int EntropyDecoder::kWindowSize;  // static.
#endif

EntropyDecoder::EntropyDecoder(const uint8_t* data, size_t size,
                               bool allow_update_cdf)
    : data_(data),
      data_end_(data + size),
      data_memcpy_end_((size >= sizeof(WindowSize))
                           ? data + size - sizeof(WindowSize) + 1
                           : data),
      allow_update_cdf_(allow_update_cdf),
      values_in_range_(kCdfMaxProbability) {
  if (data_ < data_memcpy_end_) {
    // This is a simplified version of PopulateBits() which loads 8 extra bits
    // and skips the unnecessary shifts of value and window_diff_.
    WindowSize value;
    memcpy(&value, data_, sizeof(value));
    data_ += sizeof(value);
    window_diff_ = HostToBigEndian(value) ^ -1;
    // Note the initial value of bits_ is larger than kMaxCachedBits as it's
    // used to restore the most significant 0 bit that would be present after
    // PopulateBits() when we extract the first symbol value.
    // As shown in Section 8.2.2 Initialization process for symbol decoder,
    // which uses a fixed offset to read the symbol values, the most
    // significant bit is always 0:
    //   The variable numBits is set equal to Min( sz * 8, 15).
    //   The variable buf is read using the f(numBits) parsing process.
    //   The variable paddedBuf is set equal to ( buf << (15 - numBits) ).
    //   The variable SymbolValue is set to ((1 << 15) - 1) ^ paddedBuf.
    bits_ = kWindowSize - 15;
    return;
  }
  window_diff_ = 0;
  bits_ = -15;
  PopulateBits();
}

// This is similar to the ReadSymbol() implementation but it is optimized based
// on the following facts:
//   * The probability is fixed at half. So some multiplications can be replaced
//     with bit operations.
//   * Symbol count is fixed at 2.
int EntropyDecoder::ReadBit() {
  const uint32_t curr =
      ((values_in_range_ & kReadBitMask) >> 1) + kMinimumProbabilityPerSymbol;
  const auto symbol_value = static_cast<uint16_t>(window_diff_ >> bits_);
  int bit = 1;
  if (symbol_value >= curr) {
    values_in_range_ -= curr;
    window_diff_ -= static_cast<WindowSize>(curr) << bits_;
    bit = 0;
  } else {
    values_in_range_ = curr;
  }
  NormalizeRange();
  return bit;
}

int64_t EntropyDecoder::ReadLiteral(int num_bits) {
  assert(num_bits <= 32);
  assert(num_bits > 0);
  uint32_t literal = 0;
  int bit = num_bits - 1;
  do {
    // ARM can combine a shift operation with a constant number of bits with
    // some other operations, such as the OR operation.
    // Here is an ARM disassembly example:
    // orr w1, w0, w1, lsl #1
    // which left shifts register w1 by 1 bit and OR the shift result with
    // register w0.
    // The next 2 lines are equivalent to:
    // literal |= static_cast<uint32_t>(ReadBit()) << bit;
    literal <<= 1;
    literal |= static_cast<uint32_t>(ReadBit());
  } while (--bit >= 0);
  return literal;
}

int EntropyDecoder::ReadSymbol(uint16_t* LIBGAV1_RESTRICT const cdf,
                               int symbol_count) {
  const int symbol = ReadSymbolImpl(cdf, symbol_count);
  if (allow_update_cdf_) {
    UpdateCdf(cdf, symbol_count, symbol);
  }
  return symbol;
}

bool EntropyDecoder::ReadSymbol(uint16_t* LIBGAV1_RESTRICT cdf) {
  assert(cdf[1] == 0);
  const bool symbol = ReadSymbolImpl(cdf[0]) != 0;
  if (allow_update_cdf_) {
    const uint16_t count = cdf[2];
    // rate is computed in the spec as:
    //  3 + ( cdf[N] > 15 ) + ( cdf[N] > 31 ) + Min(FloorLog2(N), 2)
    // In this case N is 2 and cdf[N] is |count|. So the equation becomes:
    //  4 + (count > 15) + (count > 31)
    // Note that the largest value for count is 32 (it is not incremented beyond
    // 32). So using that information:
    //  count >> 4 is 0 for count from 0 to 15.
    //  count >> 4 is 1 for count from 16 to 31.
    //  count >> 4 is 2 for count == 32.
    // Now, the equation becomes:
    //  4 + (count >> 4).
    // Since (count >> 4) can only be 0 or 1 or 2, the addition can be replaced
    // with bitwise or. So the final equation is:
    //  4 | (count >> 4).
    const int rate = 4 | (count >> 4);
    if (symbol) {
      cdf[0] += (kCdfMaxProbability - cdf[0]) >> rate;
    } else {
      cdf[0] -= cdf[0] >> rate;
    }
    cdf[2] += static_cast<uint16_t>(count < 32);
  }
  return symbol;
}

bool EntropyDecoder::ReadSymbolWithoutCdfUpdate(uint16_t cdf) {
  return ReadSymbolImpl(cdf) != 0;
}

template <int symbol_count>
int EntropyDecoder::ReadSymbol(uint16_t* LIBGAV1_RESTRICT const cdf) {
  static_assert(symbol_count >= 3 && symbol_count <= 16, "");
  if (symbol_count == 3 || symbol_count == 4) {
    return ReadSymbol3Or4(cdf, symbol_count);
  }
  int symbol;
  if (symbol_count == 8) {
    symbol = ReadSymbolImpl8(cdf);
  } else if (symbol_count <= 13) {
    symbol = ReadSymbolImpl(cdf, symbol_count);
  } else {
    symbol = ReadSymbolImplBinarySearch(cdf, symbol_count);
  }
  if (allow_update_cdf_) {
    if (symbol_count == 5) {
      UpdateCdf5(cdf, symbol);
    } else if (symbol_count == 7) {
      UpdateCdf7(cdf, symbol);
    } else if (symbol_count == 8) {
      UpdateCdf8(cdf, symbol);
    } else if (symbol_count == 9) {
      UpdateCdf9(cdf, symbol);
    } else if (symbol_count == 11) {
      UpdateCdf11(cdf, symbol);
    } else if (symbol_count == 13) {
      UpdateCdf13(cdf, symbol);
    } else if (symbol_count == 16) {
      UpdateCdf16(cdf, symbol);
    } else {
      UpdateCdf(cdf, symbol_count, symbol);
    }
  }
  return symbol;
}

int EntropyDecoder::ReadSymbolImpl(const uint16_t* LIBGAV1_RESTRICT const cdf,
                                   int symbol_count) {
  assert(cdf[symbol_count - 1] == 0);
  --symbol_count;
  uint32_t curr = values_in_range_;
  int symbol = -1;
  uint32_t prev;
  const auto symbol_value = static_cast<uint16_t>(window_diff_ >> bits_);
  uint32_t delta = kMinimumProbabilityPerSymbol * symbol_count;
  // Search through the |cdf| array to determine where the scaled cdf value and
  // |symbol_value| cross over.
  do {
    prev = curr;
    curr = (((values_in_range_ >> 8) * (cdf[++symbol] >> kCdfPrecision)) >> 1) +
           delta;
    delta -= kMinimumProbabilityPerSymbol;
  } while (symbol_value < curr);
  values_in_range_ = prev - curr;
  window_diff_ -= static_cast<WindowSize>(curr) << bits_;
  NormalizeRange();
  return symbol;
}

int EntropyDecoder::ReadSymbolImplBinarySearch(
    const uint16_t* LIBGAV1_RESTRICT const cdf, int symbol_count) {
  assert(cdf[symbol_count - 1] == 0);
  assert(symbol_count > 1 && symbol_count <= 16);
  --symbol_count;
  const auto symbol_value = static_cast<uint16_t>(window_diff_ >> bits_);
  // Search through the |cdf| array to determine where the scaled cdf value and
  // |symbol_value| cross over. Since the CDFs are sorted, we can use binary
  // search to do this. Let |symbol| be the index of the first |cdf| array
  // entry whose scaled cdf value is less than or equal to |symbol_value|. The
  // binary search maintains the invariant:
  //   low <= symbol <= high + 1
  // and terminates when low == high + 1.
  int low = 0;
  int high = symbol_count - 1;
  // The binary search maintains the invariants that |prev| is the scaled cdf
  // value for low - 1 and |curr| is the scaled cdf value for high + 1. (By
  // convention, the scaled cdf value for -1 is values_in_range_.) When the
  // binary search terminates, |prev| is the scaled cdf value for symbol - 1
  // and |curr| is the scaled cdf value for |symbol|.
  uint32_t prev = values_in_range_;
  uint32_t curr = 0;
  const uint32_t values_in_range_shifted = values_in_range_ >> 8;
  do {
    const int mid = DivideBy2(low + high);
    const uint32_t scaled_cdf =
        ScaleCdf(values_in_range_shifted, cdf, mid, symbol_count);
    if (symbol_value < scaled_cdf) {
      low = mid + 1;
      prev = scaled_cdf;
    } else {
      high = mid - 1;
      curr = scaled_cdf;
    }
  } while (low <= high);
  assert(low == high + 1);
  // At this point, |low| is the symbol that has been decoded.
  values_in_range_ = prev - curr;
  window_diff_ -= static_cast<WindowSize>(curr) << bits_;
  NormalizeRange();
  return low;
}

int EntropyDecoder::ReadSymbolImpl(uint16_t cdf) {
  const auto symbol_value = static_cast<uint16_t>(window_diff_ >> bits_);
  const uint32_t curr =
      (((values_in_range_ >> 8) * (cdf >> kCdfPrecision)) >> 1) +
      kMinimumProbabilityPerSymbol;
  const int symbol = static_cast<int>(symbol_value < curr);
  if (symbol == 1) {
    values_in_range_ = curr;
  } else {
    values_in_range_ -= curr;
    window_diff_ -= static_cast<WindowSize>(curr) << bits_;
  }
  NormalizeRange();
  return symbol;
}

// Equivalent to ReadSymbol(cdf, [3,4]), with the ReadSymbolImpl and UpdateCdf
// calls inlined.
int EntropyDecoder::ReadSymbol3Or4(uint16_t* LIBGAV1_RESTRICT const cdf,
                                   const int symbol_count) {
  assert(cdf[symbol_count - 1] == 0);
  uint32_t curr = values_in_range_;
  uint32_t prev;
  const auto symbol_value = static_cast<uint16_t>(window_diff_ >> bits_);
  uint32_t delta = kMinimumProbabilityPerSymbol * (symbol_count - 1);
  const uint32_t values_in_range_shifted = values_in_range_ >> 8;

  // Search through the |cdf| array to determine where the scaled cdf value and
  // |symbol_value| cross over. If allow_update_cdf_ is true, update the |cdf|
  // array.
  //
  // The original code is:
  //
  //  int symbol = -1;
  //  do {
  //    prev = curr;
  //    curr =
  //        ((values_in_range_shifted * (cdf[++symbol] >> kCdfPrecision)) >> 1)
  //        + delta;
  //    delta -= kMinimumProbabilityPerSymbol;
  //  } while (symbol_value < curr);
  //  if (allow_update_cdf_) {
  //    UpdateCdf(cdf, [3,4], symbol);
  //  }
  //
  // The do-while loop is unrolled with three or four iterations, and the
  // UpdateCdf call is inlined and merged into the iterations.
  int symbol = 0;
  // Iteration 0.
  prev = curr;
  curr =
      ((values_in_range_shifted * (cdf[symbol] >> kCdfPrecision)) >> 1) + delta;
  if (symbol_value >= curr) {
    // symbol == 0.
    if (allow_update_cdf_) {
      // Inlined version of UpdateCdf(cdf, [3,4], /*symbol=*/0).
      const uint16_t count = cdf[symbol_count];
      cdf[symbol_count] += static_cast<uint16_t>(count < 32);
      const int rate = (count >> 4) + 4 + static_cast<int>(symbol_count == 4);
      if (symbol_count == 4) {
#if LIBGAV1_ENTROPY_DECODER_ENABLE_NEON
        // 1. On Motorola Moto G5 Plus (running 32-bit Android 8.1.0), the ARM
        // NEON code is slower. Consider using the C version if __arm__ is
        // defined.
        // 2. The ARM NEON code (compiled for arm64) is slightly slower on
        // Samsung Galaxy S8+ (SM-G955FD).
        uint16x4_t cdf_vec = vld1_u16(cdf);
        const int16x4_t negative_rate = vdup_n_s16(-rate);
        const uint16x4_t delta = vshl_u16(cdf_vec, negative_rate);
        cdf_vec = vsub_u16(cdf_vec, delta);
        vst1_u16(cdf, cdf_vec);
#elif LIBGAV1_ENTROPY_DECODER_ENABLE_SSE2
        __m128i cdf_vec = LoadLo8(cdf);
        const __m128i delta = _mm_sra_epi16(cdf_vec, _mm_cvtsi32_si128(rate));
        cdf_vec = _mm_sub_epi16(cdf_vec, delta);
        StoreLo8(cdf, cdf_vec);
#else  // !LIBGAV1_ENTROPY_DECODER_ENABLE_SSE2
        cdf[0] -= cdf[0] >> rate;
        cdf[1] -= cdf[1] >> rate;
        cdf[2] -= cdf[2] >> rate;
#endif
      } else {  // symbol_count == 3.
        cdf[0] -= cdf[0] >> rate;
        cdf[1] -= cdf[1] >> rate;
      }
    }
    goto found;
  }
  ++symbol;
  delta -= kMinimumProbabilityPerSymbol;
  // Iteration 1.
  prev = curr;
  curr =
      ((values_in_range_shifted * (cdf[symbol] >> kCdfPrecision)) >> 1) + delta;
  if (symbol_value >= curr) {
    // symbol == 1.
    if (allow_update_cdf_) {
      // Inlined version of UpdateCdf(cdf, [3,4], /*symbol=*/1).
      const uint16_t count = cdf[symbol_count];
      cdf[symbol_count] += static_cast<uint16_t>(count < 32);
      const int rate = (count >> 4) + 4 + static_cast<int>(symbol_count == 4);
      cdf[0] += (kCdfMaxProbability - cdf[0]) >> rate;
      cdf[1] -= cdf[1] >> rate;
      if (symbol_count == 4) cdf[2] -= cdf[2] >> rate;
    }
    goto found;
  }
  ++symbol;
  if (symbol_count == 4) {
    delta -= kMinimumProbabilityPerSymbol;
    // Iteration 2.
    prev = curr;
    curr = ((values_in_range_shifted * (cdf[symbol] >> kCdfPrecision)) >> 1) +
           delta;
    if (symbol_value >= curr) {
      // symbol == 2.
      if (allow_update_cdf_) {
        // Inlined version of UpdateCdf(cdf, 4, /*symbol=*/2).
        const uint16_t count = cdf[4];
        cdf[4] += static_cast<uint16_t>(count < 32);
        const int rate = (count >> 4) + 5;
        cdf[0] += (kCdfMaxProbability - cdf[0]) >> rate;
        cdf[1] += (kCdfMaxProbability - cdf[1]) >> rate;
        cdf[2] -= cdf[2] >> rate;
      }
      goto found;
    }
    ++symbol;
  }
  // |delta| is 0 for the last iteration.
  // Iteration 2 (symbol_count == 3) or 3 (symbol_count == 4).
  prev = curr;
  // Since cdf[symbol_count - 1] is 0 and |delta| is 0, |curr| is also 0.
  curr = 0;
  // symbol == [2,3].
  if (allow_update_cdf_) {
    // Inlined version of UpdateCdf(cdf, [3,4], /*symbol=*/[2,3]).
    const uint16_t count = cdf[symbol_count];
    cdf[symbol_count] += static_cast<uint16_t>(count < 32);
    const int rate = (4 | (count >> 4)) + static_cast<int>(symbol_count == 4);
    if (symbol_count == 4) {
#if LIBGAV1_ENTROPY_DECODER_ENABLE_NEON
      // On Motorola Moto G5 Plus (running 32-bit Android 8.1.0), the ARM NEON
      // code is a tiny bit slower. Consider using the C version if __arm__ is
      // defined.
      uint16x4_t cdf_vec = vld1_u16(cdf);
      const uint16x4_t cdf_max_probability = vdup_n_u16(kCdfMaxProbability);
      const int16x4_t diff =
          vreinterpret_s16_u16(vsub_u16(cdf_max_probability, cdf_vec));
      const int16x4_t negative_rate = vdup_n_s16(-rate);
      const uint16x4_t delta =
          vreinterpret_u16_s16(vshl_s16(diff, negative_rate));
      cdf_vec = vadd_u16(cdf_vec, delta);
      vst1_u16(cdf, cdf_vec);
      cdf[3] = 0;
#elif LIBGAV1_ENTROPY_DECODER_ENABLE_SSE2
      __m128i cdf_vec = LoadLo8(cdf);
      const __m128i cdf_max_probability =
          _mm_shufflelo_epi16(_mm_cvtsi32_si128(kCdfMaxProbability), 0);
      const __m128i diff = _mm_sub_epi16(cdf_max_probability, cdf_vec);
      const __m128i delta = _mm_sra_epi16(diff, _mm_cvtsi32_si128(rate));
      cdf_vec = _mm_add_epi16(cdf_vec, delta);
      StoreLo8(cdf, cdf_vec);
      cdf[3] = 0;
#else  // !LIBGAV1_ENTROPY_DECODER_ENABLE_SSE2
      cdf[0] += (kCdfMaxProbability - cdf[0]) >> rate;
      cdf[1] += (kCdfMaxProbability - cdf[1]) >> rate;
      cdf[2] += (kCdfMaxProbability - cdf[2]) >> rate;
#endif
    } else {  // symbol_count == 3.
      cdf[0] += (kCdfMaxProbability - cdf[0]) >> rate;
      cdf[1] += (kCdfMaxProbability - cdf[1]) >> rate;
    }
  }
found:
  // End of unrolled do-while loop.

  values_in_range_ = prev - curr;
  window_diff_ -= static_cast<WindowSize>(curr) << bits_;
  NormalizeRange();
  return symbol;
}

int EntropyDecoder::ReadSymbolImpl8(
    const uint16_t* LIBGAV1_RESTRICT const cdf) {
  assert(cdf[7] == 0);
  uint32_t curr = values_in_range_;
  uint32_t prev;
  const auto symbol_value = static_cast<uint16_t>(window_diff_ >> bits_);
  uint32_t delta = kMinimumProbabilityPerSymbol * 7;
  // Search through the |cdf| array to determine where the scaled cdf value and
  // |symbol_value| cross over.
  //
  // The original code is:
  //
  // int symbol = -1;
  // do {
  //   prev = curr;
  //   curr =
  //       (((values_in_range_ >> 8) * (cdf[++symbol] >> kCdfPrecision)) >> 1)
  //       + delta;
  //   delta -= kMinimumProbabilityPerSymbol;
  // } while (symbol_value < curr);
  //
  // The do-while loop is unrolled with eight iterations.
  int symbol = 0;

#define READ_SYMBOL_ITERATION                                                \
  prev = curr;                                                               \
  curr = (((values_in_range_ >> 8) * (cdf[symbol] >> kCdfPrecision)) >> 1) + \
         delta;                                                              \
  if (symbol_value >= curr) goto found;                                      \
  ++symbol;                                                                  \
  delta -= kMinimumProbabilityPerSymbol

  READ_SYMBOL_ITERATION;  // Iteration 0.
  READ_SYMBOL_ITERATION;  // Iteration 1.
  READ_SYMBOL_ITERATION;  // Iteration 2.
  READ_SYMBOL_ITERATION;  // Iteration 3.
  READ_SYMBOL_ITERATION;  // Iteration 4.
  READ_SYMBOL_ITERATION;  // Iteration 5.

  // The last two iterations can be simplified, so they don't use the
  // READ_SYMBOL_ITERATION macro.
#undef READ_SYMBOL_ITERATION

  // Iteration 6.
  prev = curr;
  curr =
      (((values_in_range_ >> 8) * (cdf[symbol] >> kCdfPrecision)) >> 1) + delta;
  if (symbol_value >= curr) goto found;  // symbol == 6.
  ++symbol;
  // |delta| is 0 for the last iteration.
  // Iteration 7.
  prev = curr;
  // Since cdf[7] is 0 and |delta| is 0, |curr| is also 0.
  curr = 0;
  // symbol == 7.
found:
  // End of unrolled do-while loop.

  values_in_range_ = prev - curr;
  window_diff_ -= static_cast<WindowSize>(curr) << bits_;
  NormalizeRange();
  return symbol;
}

void EntropyDecoder::PopulateBits() {
  constexpr int kMaxCachedBits = kWindowSize - 16;
#if defined(__aarch64__)
  // Fast path: read eight bytes and add the first six bytes to window_diff_.
  // This fast path makes the following assumptions.
  // 1. We assume that unaligned load of uint64_t is fast.
  // 2. When there are enough bytes in data_, the for loop below reads 6 or 7
  //    bytes depending on the value of bits_. This fast path always reads 6
  //    bytes, which results in more calls to PopulateBits(). We assume that
  //    making more calls to a faster PopulateBits() is overall a win.
  // NOTE: Although this fast path could also be used on x86_64, it hurts
  // performance (measured on Lenovo ThinkStation P920 running Linux). (The
  // reason is still unknown.) Therefore this fast path is only used on arm64.
  static_assert(kWindowSize == 64, "");
  if (data_ < data_memcpy_end_) {
    uint64_t value;
    // arm64 supports unaligned loads, so this memcpy call is compiled to a
    // single ldr instruction.
    memcpy(&value, data_, sizeof(value));
    data_ += kMaxCachedBits >> 3;
    value = HostToBigEndian(value) ^ -1;
    value >>= kWindowSize - kMaxCachedBits;
    window_diff_ = value | (window_diff_ << kMaxCachedBits);
    bits_ += kMaxCachedBits;
    return;
  }
#endif

  const uint8_t* data = data_;
  int bits = bits_;
  WindowSize window_diff = window_diff_;

  int count = kWindowSize - 9 - (bits + 15);
  // The fast path above, if compiled, would cause clang 8.0.7 to vectorize
  // this loop. Since -15 <= bits_ <= -1, this loop has at most 6 or 7
  // iterations when WindowSize is 64 bits. So it is not profitable to
  // vectorize this loop. Note that clang 8.0.7 does not vectorize this loop if
  // the fast path above is not compiled.

#ifdef __clang__
#pragma clang loop vectorize(disable) interleave(disable)
#endif
  for (; count >= 0 && data < data_end_; count -= 8) {
    const uint8_t value = *data++ ^ -1;
    window_diff = static_cast<WindowSize>(value) | (window_diff << 8);
    bits += 8;
  }
  assert(bits <= kMaxCachedBits);
  if (data == data_end_) {
    // Shift in some 1s. This is equivalent to providing fake 0 data bits.
    window_diff = ((window_diff + 1) << (kMaxCachedBits - bits)) - 1;
    bits = kMaxCachedBits;
  }

  data_ = data;
  bits_ = bits;
  window_diff_ = window_diff;
}

void EntropyDecoder::NormalizeRange() {
  const int bits_used = 15 ^ FloorLog2(values_in_range_);
  bits_ -= bits_used;
  values_in_range_ <<= bits_used;
  if (bits_ < 0) PopulateBits();
}

// Explicit instantiations.
template int EntropyDecoder::ReadSymbol<3>(uint16_t* cdf);
template int EntropyDecoder::ReadSymbol<4>(uint16_t* cdf);
template int EntropyDecoder::ReadSymbol<5>(uint16_t* cdf);
template int EntropyDecoder::ReadSymbol<6>(uint16_t* cdf);
template int EntropyDecoder::ReadSymbol<7>(uint16_t* cdf);
template int EntropyDecoder::ReadSymbol<8>(uint16_t* cdf);
template int EntropyDecoder::ReadSymbol<9>(uint16_t* cdf);
template int EntropyDecoder::ReadSymbol<10>(uint16_t* cdf);
template int EntropyDecoder::ReadSymbol<11>(uint16_t* cdf);
template int EntropyDecoder::ReadSymbol<12>(uint16_t* cdf);
template int EntropyDecoder::ReadSymbol<13>(uint16_t* cdf);
template int EntropyDecoder::ReadSymbol<14>(uint16_t* cdf);
template int EntropyDecoder::ReadSymbol<16>(uint16_t* cdf);

}  // namespace libgav1