aboutsummaryrefslogtreecommitdiff
path: root/src/utils/raw_bit_reader_test.cc
blob: 22a97a76a623228c87e28db30cf90013aff47f54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
// Copyright 2021 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "src/utils/raw_bit_reader.h"

#include <bitset>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <new>
#include <string>
#include <tuple>
#include <vector>

#include "gtest/gtest.h"
#include "src/utils/constants.h"
#include "tests/third_party/libvpx/acm_random.h"

namespace libgav1 {
namespace {

std::string IntegerToString(int x) { return std::bitset<8>(x).to_string(); }

class RawBitReaderTest : public testing::TestWithParam<std::tuple<int, int>> {
 protected:
  RawBitReaderTest()
      : literal_size_(std::get<0>(GetParam())),
        test_data_size_(std::get<1>(GetParam())) {}

  void CreateReader(const std::vector<uint8_t>& data) {
    data_ = data;
    raw_bit_reader_.reset(new (std::nothrow)
                              RawBitReader(data_.data(), data_.size()));
  }

  void CreateReader(int size) {
    libvpx_test::ACMRandom rnd(libvpx_test::ACMRandom::DeterministicSeed());
    data_.clear();
    for (int i = 0; i < size; ++i) {
      data_.push_back(rnd.Rand8());
    }
    raw_bit_reader_.reset(new (std::nothrow)
                              RawBitReader(data_.data(), data_.size()));
  }

  // Some tests don't depend on |literal_size_|. For those tests, return true if
  // the |literal_size_| is greater than 1. If this function returns true, the
  // test will abort.
  bool RunOnlyOnce() const { return literal_size_ > 1; }

  std::unique_ptr<RawBitReader> raw_bit_reader_;
  std::vector<uint8_t> data_;
  int literal_size_;
  int test_data_size_;
};

TEST_P(RawBitReaderTest, ReadBit) {
  if (RunOnlyOnce()) return;
  CreateReader(test_data_size_);
  for (const auto& value : data_) {
    const std::string expected = IntegerToString(value);
    for (int j = 0; j < 8; ++j) {
      EXPECT_FALSE(raw_bit_reader_->Finished());
      EXPECT_EQ(static_cast<int>(expected[j] == '1'),
                raw_bit_reader_->ReadBit());
    }
  }
  EXPECT_TRUE(raw_bit_reader_->Finished());
  EXPECT_EQ(raw_bit_reader_->ReadBit(), -1);
}

TEST_P(RawBitReaderTest, ReadLiteral) {
  const int size_bytes = literal_size_;
  const int size_bits = 8 * size_bytes;
  CreateReader(test_data_size_ * size_bytes);
  for (size_t i = 0; i < data_.size(); i += size_bytes) {
    uint32_t expected_literal = 0;
    for (int j = 0; j < size_bytes; ++j) {
      expected_literal |=
          static_cast<uint32_t>(data_[i + j] << (8 * (size_bytes - j - 1)));
    }
    EXPECT_FALSE(raw_bit_reader_->Finished());
    const int64_t actual_literal = raw_bit_reader_->ReadLiteral(size_bits);
    EXPECT_EQ(static_cast<int64_t>(expected_literal), actual_literal);
    EXPECT_GE(actual_literal, 0);
  }
  EXPECT_TRUE(raw_bit_reader_->Finished());
  EXPECT_EQ(raw_bit_reader_->ReadLiteral(10), -1);
}

TEST_P(RawBitReaderTest, ReadLiteral32BitsWithMsbSet) {
  if (RunOnlyOnce()) return;
  // Three 32-bit values with MSB set.
  CreateReader({0xff, 0xff, 0xff, 0xff,    // 4294967295
                0x80, 0xff, 0xee, 0xdd,    // 2164256477
                0xa0, 0xaa, 0xbb, 0xcc});  // 2695543756
  static constexpr int64_t expected_literals[] = {4294967295, 2164256477,
                                                  2695543756};
  for (const int64_t expected_literal : expected_literals) {
    EXPECT_FALSE(raw_bit_reader_->Finished());
    const int64_t actual_literal = raw_bit_reader_->ReadLiteral(32);
    EXPECT_EQ(expected_literal, actual_literal);
    EXPECT_GE(actual_literal, 0);
  }
  EXPECT_TRUE(raw_bit_reader_->Finished());
  EXPECT_EQ(raw_bit_reader_->ReadLiteral(10), -1);
}

TEST_P(RawBitReaderTest, ReadLiteralNotEnoughBits) {
  if (RunOnlyOnce()) return;
  CreateReader(4);  // 32 bits.
  EXPECT_GE(raw_bit_reader_->ReadLiteral(16), 0);
  EXPECT_EQ(raw_bit_reader_->ReadLiteral(32), -1);
}

TEST_P(RawBitReaderTest, ReadLiteralMaxNumBits) {
  if (RunOnlyOnce()) return;
  CreateReader(4);  // 32 bits.
  EXPECT_NE(raw_bit_reader_->ReadLiteral(32), -1);
}

TEST_P(RawBitReaderTest, ReadInverseSignedLiteral) {
  if (RunOnlyOnce()) return;
  // This is the only usage for this function in the decoding process. So
  // testing just that case.
  const int size_bits = 6;
  data_.clear();
  // Negative value followed by a positive value.
  data_.push_back(0xd2);
  data_.push_back(0xa4);
  raw_bit_reader_.reset(new (std::nothrow)
                            RawBitReader(data_.data(), data_.size()));
  int value;
  EXPECT_TRUE(raw_bit_reader_->ReadInverseSignedLiteral(size_bits, &value));
  EXPECT_EQ(value, -23);
  EXPECT_TRUE(raw_bit_reader_->ReadInverseSignedLiteral(size_bits, &value));
  EXPECT_EQ(value, 41);
  // We have only two bits left. Trying to read an inverse signed literal of 2
  // bits actually needs 3 bits. So this should fail.
  EXPECT_FALSE(raw_bit_reader_->ReadInverseSignedLiteral(2, &value));
}

TEST_P(RawBitReaderTest, ZeroSize) {
  if (RunOnlyOnce()) return;
  // Valid data, zero size.
  data_.clear();
  data_.push_back(0xf0);
  raw_bit_reader_.reset(new (std::nothrow) RawBitReader(data_.data(), 0));
  EXPECT_EQ(raw_bit_reader_->ReadBit(), -1);
  EXPECT_EQ(raw_bit_reader_->ReadLiteral(2), -1);
  // NULL data, zero size.
  raw_bit_reader_.reset(new (std::nothrow) RawBitReader(nullptr, 0));
  EXPECT_EQ(raw_bit_reader_->ReadBit(), -1);
  EXPECT_EQ(raw_bit_reader_->ReadLiteral(2), -1);
}

TEST_P(RawBitReaderTest, AlignToNextByte) {
  if (RunOnlyOnce()) return;
  CreateReader({0x00, 0x00, 0x00, 0x0f});
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 0);
  EXPECT_EQ(raw_bit_reader_->byte_offset(), 0);
  EXPECT_TRUE(raw_bit_reader_->AlignToNextByte());
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 0);
  EXPECT_EQ(raw_bit_reader_->byte_offset(), 0);
  EXPECT_NE(raw_bit_reader_->ReadBit(), -1);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 1);
  EXPECT_EQ(raw_bit_reader_->byte_offset(), 1);
  EXPECT_TRUE(raw_bit_reader_->AlignToNextByte());
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 8);
  EXPECT_EQ(raw_bit_reader_->byte_offset(), 1);
  EXPECT_NE(raw_bit_reader_->ReadLiteral(16), -1);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 24);
  EXPECT_EQ(raw_bit_reader_->byte_offset(), 3);
  EXPECT_TRUE(raw_bit_reader_->AlignToNextByte());
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 24);
  EXPECT_EQ(raw_bit_reader_->byte_offset(), 3);
  EXPECT_NE(raw_bit_reader_->ReadBit(), -1);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 25);
  EXPECT_EQ(raw_bit_reader_->byte_offset(), 4);
  // Some bits are non-zero.
  EXPECT_FALSE(raw_bit_reader_->AlignToNextByte());
}

TEST_P(RawBitReaderTest, VerifyAndSkipTrailingBits) {
  if (RunOnlyOnce()) return;
  std::vector<uint8_t> data;

  // 1 byte trailing byte.
  data.push_back(0x80);
  CreateReader(data);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 0);
  EXPECT_TRUE(raw_bit_reader_->VerifyAndSkipTrailingBits(8));
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 8);

  // 2 byte trailing byte beginning at a byte-aligned offset.
  data.clear();
  data.push_back(0xf8);
  data.push_back(0x80);
  CreateReader(data);
  EXPECT_NE(raw_bit_reader_->ReadLiteral(8), -1);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 8);
  EXPECT_TRUE(raw_bit_reader_->VerifyAndSkipTrailingBits(8));
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 16);

  // 2 byte trailing byte beginning at a non-byte-aligned offset.
  data.clear();
  data.push_back(0xf8);
  data.push_back(0x00);
  CreateReader(data);
  EXPECT_NE(raw_bit_reader_->ReadLiteral(4), -1);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 4);
  EXPECT_TRUE(raw_bit_reader_->VerifyAndSkipTrailingBits(4));
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 8);

  // Invalid trailing byte at a byte-aligned offset.
  data.clear();
  data.push_back(0xf7);
  data.push_back(0x70);
  CreateReader(data);
  EXPECT_NE(raw_bit_reader_->ReadLiteral(8), -1);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 8);
  EXPECT_FALSE(raw_bit_reader_->VerifyAndSkipTrailingBits(8));

  // Invalid trailing byte at a non-byte-aligned offset.
  CreateReader(data);
  EXPECT_NE(raw_bit_reader_->ReadLiteral(4), -1);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 4);
  EXPECT_FALSE(raw_bit_reader_->VerifyAndSkipTrailingBits(12));

  // No more data available.
  CreateReader(data);
  EXPECT_NE(raw_bit_reader_->ReadLiteral(16), -1);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 16);
  EXPECT_TRUE(raw_bit_reader_->Finished());
  EXPECT_FALSE(raw_bit_reader_->VerifyAndSkipTrailingBits(8));
}

TEST_P(RawBitReaderTest, ReadLittleEndian) {
  if (RunOnlyOnce()) return;
  std::vector<uint8_t> data;
  size_t actual;

  // Invalid input.
  data.push_back(0x00);  // dummy.
  CreateReader(data);
  EXPECT_FALSE(raw_bit_reader_->ReadLittleEndian(1, nullptr));

  // One byte value.
  data.clear();
  data.push_back(0x01);
  CreateReader(data);
  ASSERT_TRUE(raw_bit_reader_->ReadLittleEndian(1, &actual));
  EXPECT_EQ(actual, 1);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 8);
  EXPECT_TRUE(raw_bit_reader_->Finished());

  // One byte value with leading bytes.
  data.clear();
  data.push_back(0x01);
  data.push_back(0x00);
  data.push_back(0x00);
  data.push_back(0x00);
  CreateReader(data);
  ASSERT_TRUE(raw_bit_reader_->ReadLittleEndian(4, &actual));
  EXPECT_EQ(actual, 1);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 32);
  EXPECT_TRUE(raw_bit_reader_->Finished());

  // Two byte value.
  data.clear();
  data.push_back(0xD9);
  data.push_back(0x01);
  CreateReader(data);
  ASSERT_TRUE(raw_bit_reader_->ReadLittleEndian(2, &actual));
  EXPECT_EQ(actual, 473);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 16);
  EXPECT_TRUE(raw_bit_reader_->Finished());

  // Two byte value with leading bytes.
  data.clear();
  data.push_back(0xD9);
  data.push_back(0x01);
  data.push_back(0x00);
  data.push_back(0x00);
  CreateReader(data);
  ASSERT_TRUE(raw_bit_reader_->ReadLittleEndian(4, &actual));
  EXPECT_EQ(actual, 473);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 32);
  EXPECT_TRUE(raw_bit_reader_->Finished());

  // Not enough bytes.
  data.clear();
  data.push_back(0x01);
  CreateReader(data);
  EXPECT_FALSE(raw_bit_reader_->ReadLittleEndian(2, &actual));
}

TEST_P(RawBitReaderTest, ReadUnsignedLeb128) {
  if (RunOnlyOnce()) return;
  std::vector<uint8_t> data;
  size_t actual;

  // Invalid input.
  data.push_back(0x00);  // dummy.
  CreateReader(data);
  EXPECT_FALSE(raw_bit_reader_->ReadUnsignedLeb128(nullptr));

  // One byte value.
  data.clear();
  data.push_back(0x01);
  CreateReader(data);
  ASSERT_TRUE(raw_bit_reader_->ReadUnsignedLeb128(&actual));
  EXPECT_EQ(actual, 1);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 8);
  EXPECT_TRUE(raw_bit_reader_->Finished());

  // One byte value with trailing bytes.
  data.clear();
  data.push_back(0x81);
  data.push_back(0x80);
  data.push_back(0x80);
  data.push_back(0x00);
  CreateReader(data);
  ASSERT_TRUE(raw_bit_reader_->ReadUnsignedLeb128(&actual));
  EXPECT_EQ(actual, 1);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 32);
  EXPECT_TRUE(raw_bit_reader_->Finished());

  // Two byte value.
  data.clear();
  data.push_back(0xD9);
  data.push_back(0x01);
  CreateReader(data);
  ASSERT_TRUE(raw_bit_reader_->ReadUnsignedLeb128(&actual));
  EXPECT_EQ(actual, 217);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 16);
  EXPECT_TRUE(raw_bit_reader_->Finished());

  // Two byte value with trailing bytes.
  data.clear();
  data.push_back(0xD9);
  data.push_back(0x81);
  data.push_back(0x80);
  data.push_back(0x80);
  data.push_back(0x00);
  CreateReader(data);
  ASSERT_TRUE(raw_bit_reader_->ReadUnsignedLeb128(&actual));
  EXPECT_EQ(actual, 217);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 40);
  EXPECT_TRUE(raw_bit_reader_->Finished());

  // Value > 32 bits.
  data.clear();
  for (int i = 0; i < 5; ++i) data.push_back(0xD9);
  data.push_back(0x00);
  CreateReader(data);
  EXPECT_FALSE(raw_bit_reader_->ReadUnsignedLeb128(&actual));

  // Not enough bytes (truncated leb128 value).
  data.clear();
  data.push_back(0x81);
  data.push_back(0x81);
  data.push_back(0x81);
  CreateReader(data);
  EXPECT_FALSE(raw_bit_reader_->ReadUnsignedLeb128(&actual));

  // Exceeds kMaximumLeb128Size.
  data.clear();
  for (int i = 0; i < 10; ++i) data.push_back(0x80);
  CreateReader(data);
  EXPECT_FALSE(raw_bit_reader_->ReadUnsignedLeb128(&actual));
}

TEST_P(RawBitReaderTest, ReadUvlc) {
  if (RunOnlyOnce()) return;
  std::vector<uint8_t> data;
  uint32_t actual;

  // Invalid input.
  data.push_back(0x00);  // dummy.
  CreateReader(data);
  EXPECT_FALSE(raw_bit_reader_->ReadUvlc(nullptr));

  // Zero bit value.
  data.clear();
  data.push_back(0x80);
  CreateReader(data);
  ASSERT_TRUE(raw_bit_reader_->ReadUvlc(&actual));
  EXPECT_EQ(actual, 0);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 1);

  // One bit value.
  data.clear();
  data.push_back(0x60);  // 011...
  CreateReader(data);
  ASSERT_TRUE(raw_bit_reader_->ReadUvlc(&actual));
  EXPECT_EQ(actual, 2);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 3);

  // Two bit value.
  data.clear();
  data.push_back(0x38);  // 00111...
  CreateReader(data);
  ASSERT_TRUE(raw_bit_reader_->ReadUvlc(&actual));
  EXPECT_EQ(actual, 6);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 5);

  // 31 bit value.
  data.clear();
  // (1 << 32) - 2 (= UINT32_MAX - 1) is the largest value that can be encoded
  // as uvlc().
  data.push_back(0x00);
  data.push_back(0x00);
  data.push_back(0x00);
  data.push_back(0x01);
  data.push_back(0xFF);
  data.push_back(0xFF);
  data.push_back(0xFF);
  data.push_back(0xFE);
  CreateReader(data);
  ASSERT_TRUE(raw_bit_reader_->ReadUvlc(&actual));
  EXPECT_EQ(actual, UINT32_MAX - 1);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 63);

  // Not enough bits (truncated uvlc value).
  data.clear();
  data.push_back(0x07);
  CreateReader(data);
  EXPECT_FALSE(raw_bit_reader_->ReadUvlc(&actual));

  // 32 bits.
  data.clear();
  data.push_back(0x00);
  data.push_back(0x00);
  data.push_back(0x00);
  data.push_back(0x00);
  data.push_back(0xFF);
  CreateReader(data);
  EXPECT_FALSE(raw_bit_reader_->ReadUvlc(&actual));

  // Exceeds 32 bits.
  data.clear();
  data.push_back(0x00);
  data.push_back(0x00);
  data.push_back(0x00);
  data.push_back(0x00);
  data.push_back(0x0F);
  CreateReader(data);
  EXPECT_FALSE(raw_bit_reader_->ReadUvlc(&actual));
}

TEST_P(RawBitReaderTest, DecodeSignedSubexpWithReference) {
  if (RunOnlyOnce()) return;
  std::vector<uint8_t> data;
  int actual;

  data.push_back(0xa0);  // v = 5;
  CreateReader(data);
  EXPECT_TRUE(raw_bit_reader_->DecodeSignedSubexpWithReference(
      10, 20, 15, kGlobalMotionReadControl, &actual));
  EXPECT_EQ(actual, 12);

  data.clear();
  data.push_back(0xd0);  // v = 6; extra_bit = 1;
  CreateReader(data);
  EXPECT_TRUE(raw_bit_reader_->DecodeSignedSubexpWithReference(
      10, 20, 15, kGlobalMotionReadControl, &actual));
  EXPECT_EQ(actual, 11);

  data.clear();
  data.push_back(0xc8);  // subexp_more_bits = 1; v = 9;
  CreateReader(data);
  EXPECT_TRUE(raw_bit_reader_->DecodeSignedSubexpWithReference(
      10, 40, 15, kGlobalMotionReadControl, &actual));
  EXPECT_EQ(actual, 27);

  data.clear();
  data.push_back(0x60);  // subexp_more_bits = 0; subexp_bits = 6.
  CreateReader(data);
  EXPECT_TRUE(raw_bit_reader_->DecodeSignedSubexpWithReference(
      10, 40, 15, kGlobalMotionReadControl, &actual));
  EXPECT_EQ(actual, 18);

  data.clear();
  data.push_back(0x60);
  CreateReader(data);
  // Control is greater than 32, which makes b >= 32 in DecodeSubexp() and
  // should return false.
  EXPECT_FALSE(raw_bit_reader_->DecodeSignedSubexpWithReference(10, 40, 15, 35,
                                                                &actual));
}

TEST_P(RawBitReaderTest, DecodeUniform) {
  if (RunOnlyOnce()) return;
  // Test the example from the AV1 spec, Section 4.10.7. ns(n).
  // n = 5
  // Value            ns(n) encoding
  // -------------------------------
  // 0                 00
  // 1                 01
  // 2                 10
  // 3                110
  // 4                111
  //
  // The five encoded values are concatenated into two bytes.
  std::vector<uint8_t> data = {0x1b, 0x70};
  CreateReader(data);
  int actual;
  for (int i = 0; i < 5; ++i) {
    EXPECT_TRUE(raw_bit_reader_->DecodeUniform(5, &actual));
    EXPECT_EQ(actual, i);
  }

  // If n is a power of 2, ns(n) is simply the log2(n)-bit representation of
  // the unsigned number.
  // Test n = 16.
  // The 16 encoded values are concatenated into 8 bytes.
  data = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef};
  CreateReader(data);
  for (int i = 0; i < 16; ++i) {
    EXPECT_TRUE(raw_bit_reader_->DecodeUniform(16, &actual));
    EXPECT_EQ(actual, i);
  }
}

TEST_P(RawBitReaderTest, SkipBytes) {
  if (RunOnlyOnce()) return;
  std::vector<uint8_t> data = {0x00, 0x00, 0x00, 0x00, 0x00};
  CreateReader(data);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 0);
  EXPECT_TRUE(raw_bit_reader_->SkipBytes(1));
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 8);
  EXPECT_GE(raw_bit_reader_->ReadBit(), 0);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 9);
  EXPECT_FALSE(raw_bit_reader_->SkipBytes(1));  // Not at a byte boundary.
  EXPECT_TRUE(raw_bit_reader_->AlignToNextByte());
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 16);
  EXPECT_FALSE(raw_bit_reader_->SkipBytes(10));  // Not enough bytes.
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 16);
  EXPECT_TRUE(raw_bit_reader_->SkipBytes(3));
  EXPECT_TRUE(raw_bit_reader_->Finished());
  EXPECT_EQ(raw_bit_reader_->ReadBit(), -1);
}

TEST_P(RawBitReaderTest, SkipBits) {
  if (RunOnlyOnce()) return;
  std::vector<uint8_t> data = {0x00, 0x00, 0x00, 0x00, 0x00};
  CreateReader(data);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 0);
  EXPECT_TRUE(raw_bit_reader_->SkipBits(8));
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 8);
  EXPECT_GE(raw_bit_reader_->ReadBit(), 0);
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 9);
  EXPECT_TRUE(raw_bit_reader_->SkipBits(10));  // Not at a byte boundary.
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 19);
  EXPECT_FALSE(raw_bit_reader_->SkipBits(80));  // Not enough bytes.
  EXPECT_EQ(raw_bit_reader_->bit_offset(), 19);
  EXPECT_TRUE(raw_bit_reader_->SkipBits(21));
  EXPECT_TRUE(raw_bit_reader_->Finished());
  EXPECT_EQ(raw_bit_reader_->ReadBit(), -1);
}

INSTANTIATE_TEST_SUITE_P(
    RawBitReaderTestInstance, RawBitReaderTest,
    testing::Combine(testing::Range(1, 5),    // literal size.
                     testing::Values(100)));  // number of bits/literals.

}  // namespace
}  // namespace libgav1