aboutsummaryrefslogtreecommitdiff
path: root/src/warp_prediction_test.cc
blob: 46f262fb04ab6da766068d608be9914a299937a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Copyright 2021 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "src/warp_prediction.h"

#include <cstddef>
#include <cstdint>
#include <ostream>

#include "absl/base/macros.h"
#include "gtest/gtest.h"
#include "src/obu_parser.h"
#include "src/utils/common.h"
#include "src/utils/constants.h"
#include "src/utils/types.h"
#include "tests/third_party/libvpx/acm_random.h"

namespace libgav1 {
namespace {

constexpr int16_t kExpectedWarpParamsOutput[10][4] = {
    {0, 0, 0, 0},
    {2880, 2880, 2752, 2752},
    {-1408, -1408, -1472, -1472},
    {0, 0, 0, 0},
    {6784, 6784, 6144, 6144},  // Invalid.
    {-5312, -5312, -5824, -5824},
    {-3904, -3904, -4160, -4160},
    {2496, 2496, 2368, 2368},
    {1024, 1024, 1024, 1024},
    {-7808, -7808, -8832, -8832},  // Invalid.
};

constexpr bool kExpectedWarpValid[10] = {
    true, true, true, true, false, true, true, true, true, false,
};

int RandomWarpedParam(int seed_offset, int bits) {
  libvpx_test::ACMRandom rnd(seed_offset +
                             libvpx_test::ACMRandom::DeterministicSeed());
  // 1 in 8 chance of generating zero (arbitrary).
  const bool zero = (rnd.Rand16() & 7) == 0;
  if (zero) return 0;
  // Generate uniform values in the range [-(1 << bits), 1] U [1, 1 << bits].
  const int mask = (1 << bits) - 1;
  const int value = 1 + (rnd.RandRange(1U << 31) & mask);
  const bool sign = (rnd.Rand16() & 1) != 0;
  return sign ? value : -value;
}

void GenerateWarpedModel(GlobalMotion* warp_params, int seed) {
  do {
    warp_params->params[0] =
        RandomWarpedParam(seed, kWarpedModelPrecisionBits + 6);
    warp_params->params[1] =
        RandomWarpedParam(seed, kWarpedModelPrecisionBits + 6);
    warp_params->params[2] =
        RandomWarpedParam(seed, kWarpedModelPrecisionBits - 3) +
        (1 << kWarpedModelPrecisionBits);
    warp_params->params[3] =
        RandomWarpedParam(seed, kWarpedModelPrecisionBits - 3);
    warp_params->params[4] =
        RandomWarpedParam(seed, kWarpedModelPrecisionBits - 3);
    warp_params->params[5] =
        RandomWarpedParam(seed, kWarpedModelPrecisionBits - 3) +
        (1 << kWarpedModelPrecisionBits);
  } while (warp_params->params[2] == 0);
}

TEST(WarpPredictionTest, SetupShear) {
  for (size_t i = 0; i < ABSL_ARRAYSIZE(kExpectedWarpParamsOutput); ++i) {
    GlobalMotion warp_params;
    GenerateWarpedModel(&warp_params, static_cast<int>(i));
    const bool warp_valid = SetupShear(&warp_params);

    SCOPED_TRACE(testing::Message() << "Test failure at iteration: " << i);
    EXPECT_EQ(warp_valid, kExpectedWarpValid[i]);
    EXPECT_EQ(warp_params.alpha, kExpectedWarpParamsOutput[i][0]);
    EXPECT_EQ(warp_params.beta, kExpectedWarpParamsOutput[i][1]);
    EXPECT_EQ(warp_params.gamma, kExpectedWarpParamsOutput[i][2]);
    EXPECT_EQ(warp_params.delta, kExpectedWarpParamsOutput[i][3]);
  }

  // Test signed shift behavior in delta and gamma generation.
  GlobalMotion warp_params;
  warp_params.params[0] = 24748;
  warp_params.params[1] = -142530;
  warp_params.params[2] = 65516;
  warp_params.params[3] = -640;
  warp_params.params[4] = 256;
  warp_params.params[5] = 65310;
  EXPECT_TRUE(SetupShear(&warp_params));
  EXPECT_EQ(warp_params.alpha, 0);
  EXPECT_EQ(warp_params.beta, -640);
  EXPECT_EQ(warp_params.gamma, 256);
  EXPECT_EQ(warp_params.delta, -192);

  warp_params.params[0] = 24748;
  warp_params.params[1] = -142530;
  warp_params.params[2] = 61760;
  warp_params.params[3] = -640;
  warp_params.params[4] = -13312;
  warp_params.params[5] = 65310;
  EXPECT_TRUE(SetupShear(&warp_params));
  EXPECT_EQ(warp_params.alpha, -3776);
  EXPECT_EQ(warp_params.beta, -640);
  EXPECT_EQ(warp_params.gamma, -14144);
  EXPECT_EQ(warp_params.delta, -384);
}

struct WarpInputParam {
  WarpInputParam(int num_samples, int block_width4x4, int block_height4x4)
      : num_samples(num_samples),
        block_width4x4(block_width4x4),
        block_height4x4(block_height4x4) {}
  int num_samples;
  int block_width4x4;
  int block_height4x4;
};

std::ostream& operator<<(std::ostream& os, const WarpInputParam& param) {
  return os << "num_samples: " << param.num_samples
            << ", block_(width/height)4x4: " << param.block_width4x4 << "x"
            << param.block_height4x4;
}

const WarpInputParam warp_test_param[] = {
    // sample = 1.
    WarpInputParam(1, 1, 1),
    WarpInputParam(1, 1, 2),
    WarpInputParam(1, 2, 1),
    WarpInputParam(1, 2, 2),
    WarpInputParam(1, 2, 4),
    WarpInputParam(1, 4, 2),
    WarpInputParam(1, 4, 4),
    WarpInputParam(1, 4, 8),
    WarpInputParam(1, 8, 4),
    WarpInputParam(1, 8, 8),
    WarpInputParam(1, 8, 16),
    WarpInputParam(1, 16, 8),
    WarpInputParam(1, 16, 16),
    WarpInputParam(1, 16, 32),
    WarpInputParam(1, 32, 16),
    WarpInputParam(1, 32, 32),
    // sample = 8.
    WarpInputParam(8, 1, 1),
    WarpInputParam(8, 1, 2),
    WarpInputParam(8, 2, 1),
    WarpInputParam(8, 2, 2),
    WarpInputParam(8, 2, 4),
    WarpInputParam(8, 4, 2),
    WarpInputParam(8, 4, 4),
    WarpInputParam(8, 4, 8),
    WarpInputParam(8, 8, 4),
    WarpInputParam(8, 8, 8),
    WarpInputParam(8, 8, 16),
    WarpInputParam(8, 16, 8),
    WarpInputParam(8, 16, 16),
    WarpInputParam(8, 16, 32),
    WarpInputParam(8, 32, 16),
    WarpInputParam(8, 32, 32),
};

constexpr bool kExpectedWarpEstimationValid[2] = {false, true};

constexpr int kExpectedWarpEstimationOutput[16][6] = {
    {8388607, 8388607, 57345, -8191, -8191, 57345},
    {8388607, 8388607, 57345, -8191, -8191, 57345},
    {8388607, 8388607, 57345, -8191, -8191, 57345},
    {8388607, 8388607, 57345, -8191, -8191, 57345},
    {8388607, 8388607, 57345, -8191, -8191, 57345},
    {8388607, 8388607, 57345, -8191, -8191, 57345},
    {8388607, 8388607, 57345, -8191, -8191, 57345},
    {8388607, 8388607, 57345, -8191, -8191, 57345},
    {8388607, 8388607, 57345, -8191, -8191, 57345},
    {8388607, 8388607, 57345, -8191, -8191, 57345},
    {2146296, 1589240, 57345, 8191, -8191, 73727},
    {1753128, 1196072, 73727, -8191, 8191, 57345},
    {-8388608, -8388608, 73727, 8191, 8191, 73727},
    {-4435485, -8388608, 65260, 8191, 8191, 73727},
    {-8388608, -7552929, 73727, 8191, 8191, 68240},
    {-8388608, -8388608, 73727, 8191, 8191, 70800},
};

class WarpEstimationTest : public testing::TestWithParam<WarpInputParam> {
 public:
  WarpEstimationTest() = default;
  ~WarpEstimationTest() override = default;

 protected:
  WarpInputParam param_ = GetParam();
};

TEST_P(WarpEstimationTest, WarpEstimation) {
  // Set input params.
  libvpx_test::ACMRandom rnd(libvpx_test::ACMRandom::DeterministicSeed());
  const int row4x4 = rnd.Rand8();
  const int column4x4 = rnd.Rand8();
  MotionVector mv;
  mv.mv[0] = rnd.Rand8();
  mv.mv[1] = rnd.Rand8();
  int candidates[kMaxLeastSquaresSamples][4];
  for (int i = 0; i < param_.num_samples; ++i) {
    // Make candidates relative to the top left of frame.
    candidates[i][0] = rnd.Rand8() + MultiplyBy32(row4x4);
    candidates[i][1] = rnd.Rand8() + MultiplyBy32(column4x4);
    candidates[i][2] = rnd.Rand8() + MultiplyBy32(row4x4);
    candidates[i][3] = rnd.Rand8() + MultiplyBy32(column4x4);
  }

  // Get output.
  GlobalMotion warp_params;
  const bool warp_success = WarpEstimation(
      param_.num_samples, param_.block_width4x4, param_.block_height4x4, row4x4,
      column4x4, mv, candidates, &warp_params);
  if (param_.num_samples == 1) {
    EXPECT_EQ(warp_success, kExpectedWarpEstimationValid[0]);
  } else {
    EXPECT_EQ(warp_success, kExpectedWarpEstimationValid[1]);
    int index = FloorLog2(param_.block_width4x4) * 3 - 1;
    if (param_.block_width4x4 == param_.block_height4x4) {
      index += 1;
    } else if (param_.block_width4x4 < param_.block_height4x4) {
      index += 2;
    }
    for (size_t i = 0; i < ABSL_ARRAYSIZE(warp_params.params); ++i) {
      EXPECT_EQ(warp_params.params[i], kExpectedWarpEstimationOutput[index][i]);
    }
  }
}

INSTANTIATE_TEST_SUITE_P(WarpFuncTest, WarpEstimationTest,
                         testing::ValuesIn(warp_test_param));
}  // namespace
}  // namespace libgav1