1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
|
// Copyright 2020 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/dsp/motion_field_projection.h"
#include "src/utils/cpu.h"
#if LIBGAV1_TARGETING_SSE4_1
#include <smmintrin.h>
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/dsp/x86/common_sse4.h"
#include "src/utils/common.h"
#include "src/utils/constants.h"
#include "src/utils/types.h"
namespace libgav1 {
namespace dsp {
namespace {
inline __m128i LoadDivision(const __m128i division_table,
const __m128i reference_offset) {
const __m128i kOne = _mm_set1_epi16(0x0100);
const __m128i t = _mm_add_epi8(reference_offset, reference_offset);
const __m128i tt = _mm_unpacklo_epi8(t, t);
const __m128i idx = _mm_add_epi8(tt, kOne);
return _mm_shuffle_epi8(division_table, idx);
}
inline __m128i MvProjection(const __m128i mv, const __m128i denominator,
const int numerator) {
const __m128i m0 = _mm_madd_epi16(mv, denominator);
const __m128i m = _mm_mullo_epi32(m0, _mm_set1_epi32(numerator));
// Add the sign (0 or -1) to round towards zero.
const __m128i sign = _mm_srai_epi32(m, 31);
const __m128i add_sign = _mm_add_epi32(m, sign);
const __m128i sum = _mm_add_epi32(add_sign, _mm_set1_epi32(1 << 13));
return _mm_srai_epi32(sum, 14);
}
inline __m128i MvProjectionClip(const __m128i mv, const __m128i denominator,
const int numerator) {
const __m128i mv0 = _mm_unpacklo_epi16(mv, _mm_setzero_si128());
const __m128i mv1 = _mm_unpackhi_epi16(mv, _mm_setzero_si128());
const __m128i denorm0 = _mm_unpacklo_epi16(denominator, _mm_setzero_si128());
const __m128i denorm1 = _mm_unpackhi_epi16(denominator, _mm_setzero_si128());
const __m128i s0 = MvProjection(mv0, denorm0, numerator);
const __m128i s1 = MvProjection(mv1, denorm1, numerator);
const __m128i projection = _mm_packs_epi32(s0, s1);
const __m128i projection_mv_clamp = _mm_set1_epi16(kProjectionMvClamp);
const __m128i projection_mv_clamp_negative =
_mm_set1_epi16(-kProjectionMvClamp);
const __m128i clamp = _mm_min_epi16(projection, projection_mv_clamp);
return _mm_max_epi16(clamp, projection_mv_clamp_negative);
}
inline __m128i Project_SSE4_1(const __m128i delta, const __m128i dst_sign) {
// Add 63 to negative delta so that it shifts towards zero.
const __m128i delta_sign = _mm_srai_epi16(delta, 15);
const __m128i delta_sign_63 = _mm_srli_epi16(delta_sign, 10);
const __m128i delta_adjust = _mm_add_epi16(delta, delta_sign_63);
const __m128i offset0 = _mm_srai_epi16(delta_adjust, 6);
const __m128i offset1 = _mm_xor_si128(offset0, dst_sign);
return _mm_sub_epi16(offset1, dst_sign);
}
inline void GetPosition(
const __m128i division_table, const MotionVector* const mv,
const int numerator, const int x8_start, const int x8_end, const int x8,
const __m128i& r_offsets, const __m128i& source_reference_type8,
const __m128i& skip_r, const __m128i& y8_floor8, const __m128i& y8_ceiling8,
const __m128i& d_sign, const int delta, __m128i* const r,
__m128i* const position_xy, int64_t* const skip_64, __m128i mvs[2]) {
const auto* const mv_int = reinterpret_cast<const int32_t*>(mv + x8);
*r = _mm_shuffle_epi8(r_offsets, source_reference_type8);
const __m128i denorm = LoadDivision(division_table, source_reference_type8);
__m128i projection_mv[2];
mvs[0] = LoadUnaligned16(mv_int + 0);
mvs[1] = LoadUnaligned16(mv_int + 4);
// Deinterlace x and y components
const __m128i kShuffle =
_mm_setr_epi8(0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15);
const __m128i mv0 = _mm_shuffle_epi8(mvs[0], kShuffle);
const __m128i mv1 = _mm_shuffle_epi8(mvs[1], kShuffle);
const __m128i mv_y = _mm_unpacklo_epi64(mv0, mv1);
const __m128i mv_x = _mm_unpackhi_epi64(mv0, mv1);
// numerator could be 0.
projection_mv[0] = MvProjectionClip(mv_y, denorm, numerator);
projection_mv[1] = MvProjectionClip(mv_x, denorm, numerator);
// Do not update the motion vector if the block position is not valid or
// if position_x8 is outside the current range of x8_start and x8_end.
// Note that position_y8 will always be within the range of y8_start and
// y8_end.
// After subtracting the base, valid projections are within 8-bit.
const __m128i position_y = Project_SSE4_1(projection_mv[0], d_sign);
const __m128i position_x = Project_SSE4_1(projection_mv[1], d_sign);
const __m128i positions = _mm_packs_epi16(position_x, position_y);
const __m128i k01234567 =
_mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0);
*position_xy = _mm_add_epi8(positions, k01234567);
const int x8_floor = std::max(
x8_start - x8, delta - kProjectionMvMaxHorizontalOffset); // [-8, 8]
const int x8_ceiling =
std::min(x8_end - x8, delta + 8 + kProjectionMvMaxHorizontalOffset) -
1; // [-1, 15]
const __m128i x8_floor8 = _mm_set1_epi8(x8_floor);
const __m128i x8_ceiling8 = _mm_set1_epi8(x8_ceiling);
const __m128i floor_xy = _mm_unpacklo_epi64(x8_floor8, y8_floor8);
const __m128i ceiling_xy = _mm_unpacklo_epi64(x8_ceiling8, y8_ceiling8);
const __m128i underflow = _mm_cmplt_epi8(*position_xy, floor_xy);
const __m128i overflow = _mm_cmpgt_epi8(*position_xy, ceiling_xy);
const __m128i out = _mm_or_si128(underflow, overflow);
const __m128i skip_low = _mm_or_si128(skip_r, out);
const __m128i skip = _mm_or_si128(skip_low, _mm_srli_si128(out, 8));
StoreLo8(skip_64, skip);
}
template <int idx>
inline void Store(const __m128i position, const __m128i reference_offset,
const __m128i mv, int8_t* dst_reference_offset,
MotionVector* dst_mv) {
const ptrdiff_t offset =
static_cast<int16_t>(_mm_extract_epi16(position, idx));
if ((idx & 3) == 0) {
dst_mv[offset].mv32 = _mm_cvtsi128_si32(mv);
} else {
dst_mv[offset].mv32 = _mm_extract_epi32(mv, idx & 3);
}
dst_reference_offset[offset] = _mm_extract_epi8(reference_offset, idx);
}
template <int idx>
inline void CheckStore(const int8_t* skips, const __m128i position,
const __m128i reference_offset, const __m128i mv,
int8_t* dst_reference_offset, MotionVector* dst_mv) {
if (skips[idx] == 0) {
Store<idx>(position, reference_offset, mv, dst_reference_offset, dst_mv);
}
}
// 7.9.2.
void MotionFieldProjectionKernel_SSE4_1(
const ReferenceInfo& reference_info,
const int reference_to_current_with_sign, const int dst_sign,
const int y8_start, const int y8_end, const int x8_start, const int x8_end,
TemporalMotionField* const motion_field) {
const ptrdiff_t stride = motion_field->mv.columns();
// The column range has to be offset by kProjectionMvMaxHorizontalOffset since
// coordinates in that range could end up being position_x8 because of
// projection.
const int adjusted_x8_start =
std::max(x8_start - kProjectionMvMaxHorizontalOffset, 0);
const int adjusted_x8_end = std::min(
x8_end + kProjectionMvMaxHorizontalOffset, static_cast<int>(stride));
const int adjusted_x8_end8 = adjusted_x8_end & ~7;
const int leftover = adjusted_x8_end - adjusted_x8_end8;
const int8_t* const reference_offsets =
reference_info.relative_distance_to.data();
const bool* const skip_references = reference_info.skip_references.data();
const int16_t* const projection_divisions =
reference_info.projection_divisions.data();
const ReferenceFrameType* source_reference_types =
&reference_info.motion_field_reference_frame[y8_start][0];
const MotionVector* mv = &reference_info.motion_field_mv[y8_start][0];
int8_t* dst_reference_offset = motion_field->reference_offset[y8_start];
MotionVector* dst_mv = motion_field->mv[y8_start];
const __m128i d_sign = _mm_set1_epi16(dst_sign);
static_assert(sizeof(int8_t) == sizeof(bool), "");
static_assert(sizeof(int8_t) == sizeof(ReferenceFrameType), "");
static_assert(sizeof(int32_t) == sizeof(MotionVector), "");
assert(dst_sign == 0 || dst_sign == -1);
assert(stride == motion_field->reference_offset.columns());
assert((y8_start & 7) == 0);
assert((adjusted_x8_start & 7) == 0);
// The final position calculation is represented with int16_t. Valid
// position_y8 from its base is at most 7. After considering the horizontal
// offset which is at most |stride - 1|, we have the following assertion,
// which means this optimization works for frame width up to 32K (each
// position is a 8x8 block).
assert(8 * stride <= 32768);
const __m128i skip_reference = LoadLo8(skip_references);
const __m128i r_offsets = LoadLo8(reference_offsets);
const __m128i division_table = LoadUnaligned16(projection_divisions);
int y8 = y8_start;
do {
const int y8_floor = (y8 & ~7) - y8; // [-7, 0]
const int y8_ceiling = std::min(y8_end - y8, y8_floor + 8) - 1; // [0, 7]
const __m128i y8_floor8 = _mm_set1_epi8(y8_floor);
const __m128i y8_ceiling8 = _mm_set1_epi8(y8_ceiling);
int x8;
for (x8 = adjusted_x8_start; x8 < adjusted_x8_end8; x8 += 8) {
const __m128i source_reference_type8 =
LoadLo8(source_reference_types + x8);
const __m128i skip_r =
_mm_shuffle_epi8(skip_reference, source_reference_type8);
int64_t early_skip;
StoreLo8(&early_skip, skip_r);
// Early termination #1 if all are skips. Chance is typically ~30-40%.
if (early_skip == -1) continue;
int64_t skip_64;
__m128i r, position_xy, mvs[2];
GetPosition(division_table, mv, reference_to_current_with_sign, x8_start,
x8_end, x8, r_offsets, source_reference_type8, skip_r,
y8_floor8, y8_ceiling8, d_sign, 0, &r, &position_xy, &skip_64,
mvs);
// Early termination #2 if all are skips.
// Chance is typically ~15-25% after Early termination #1.
if (skip_64 == -1) continue;
const __m128i p_y = _mm_cvtepi8_epi16(_mm_srli_si128(position_xy, 8));
const __m128i p_x = _mm_cvtepi8_epi16(position_xy);
const __m128i p_y_offset = _mm_mullo_epi16(p_y, _mm_set1_epi16(stride));
const __m128i pos = _mm_add_epi16(p_y_offset, p_x);
const __m128i position = _mm_add_epi16(pos, _mm_set1_epi16(x8));
if (skip_64 == 0) {
// Store all. Chance is typically ~70-85% after Early termination #2.
Store<0>(position, r, mvs[0], dst_reference_offset, dst_mv);
Store<1>(position, r, mvs[0], dst_reference_offset, dst_mv);
Store<2>(position, r, mvs[0], dst_reference_offset, dst_mv);
Store<3>(position, r, mvs[0], dst_reference_offset, dst_mv);
Store<4>(position, r, mvs[1], dst_reference_offset, dst_mv);
Store<5>(position, r, mvs[1], dst_reference_offset, dst_mv);
Store<6>(position, r, mvs[1], dst_reference_offset, dst_mv);
Store<7>(position, r, mvs[1], dst_reference_offset, dst_mv);
} else {
// Check and store each.
// Chance is typically ~15-30% after Early termination #2.
// The compiler is smart enough to not create the local buffer skips[].
int8_t skips[8];
memcpy(skips, &skip_64, sizeof(skips));
CheckStore<0>(skips, position, r, mvs[0], dst_reference_offset, dst_mv);
CheckStore<1>(skips, position, r, mvs[0], dst_reference_offset, dst_mv);
CheckStore<2>(skips, position, r, mvs[0], dst_reference_offset, dst_mv);
CheckStore<3>(skips, position, r, mvs[0], dst_reference_offset, dst_mv);
CheckStore<4>(skips, position, r, mvs[1], dst_reference_offset, dst_mv);
CheckStore<5>(skips, position, r, mvs[1], dst_reference_offset, dst_mv);
CheckStore<6>(skips, position, r, mvs[1], dst_reference_offset, dst_mv);
CheckStore<7>(skips, position, r, mvs[1], dst_reference_offset, dst_mv);
}
}
// The following leftover processing cannot be moved out of the do...while
// loop. Doing so may change the result storing orders of the same position.
if (leftover > 0) {
// Use SIMD only when leftover is at least 4, and there are at least 8
// elements in a row.
if (leftover >= 4 && adjusted_x8_start < adjusted_x8_end8) {
// Process the last 8 elements to avoid loading invalid memory. Some
// elements may have been processed in the above loop, which is OK.
const int delta = 8 - leftover;
x8 = adjusted_x8_end - 8;
const __m128i source_reference_type8 =
LoadLo8(source_reference_types + x8);
const __m128i skip_r =
_mm_shuffle_epi8(skip_reference, source_reference_type8);
int64_t early_skip;
StoreLo8(&early_skip, skip_r);
// Early termination #1 if all are skips.
if (early_skip != -1) {
int64_t skip_64;
__m128i r, position_xy, mvs[2];
GetPosition(division_table, mv, reference_to_current_with_sign,
x8_start, x8_end, x8, r_offsets, source_reference_type8,
skip_r, y8_floor8, y8_ceiling8, d_sign, delta, &r,
&position_xy, &skip_64, mvs);
// Early termination #2 if all are skips.
if (skip_64 != -1) {
const __m128i p_y =
_mm_cvtepi8_epi16(_mm_srli_si128(position_xy, 8));
const __m128i p_x = _mm_cvtepi8_epi16(position_xy);
const __m128i p_y_offset =
_mm_mullo_epi16(p_y, _mm_set1_epi16(stride));
const __m128i pos = _mm_add_epi16(p_y_offset, p_x);
const __m128i position = _mm_add_epi16(pos, _mm_set1_epi16(x8));
// Store up to 7 elements since leftover is at most 7.
if (skip_64 == 0) {
// Store all.
Store<1>(position, r, mvs[0], dst_reference_offset, dst_mv);
Store<2>(position, r, mvs[0], dst_reference_offset, dst_mv);
Store<3>(position, r, mvs[0], dst_reference_offset, dst_mv);
Store<4>(position, r, mvs[1], dst_reference_offset, dst_mv);
Store<5>(position, r, mvs[1], dst_reference_offset, dst_mv);
Store<6>(position, r, mvs[1], dst_reference_offset, dst_mv);
Store<7>(position, r, mvs[1], dst_reference_offset, dst_mv);
} else {
// Check and store each.
// The compiler is smart enough to not create the local buffer
// skips[].
int8_t skips[8];
memcpy(skips, &skip_64, sizeof(skips));
CheckStore<1>(skips, position, r, mvs[0], dst_reference_offset,
dst_mv);
CheckStore<2>(skips, position, r, mvs[0], dst_reference_offset,
dst_mv);
CheckStore<3>(skips, position, r, mvs[0], dst_reference_offset,
dst_mv);
CheckStore<4>(skips, position, r, mvs[1], dst_reference_offset,
dst_mv);
CheckStore<5>(skips, position, r, mvs[1], dst_reference_offset,
dst_mv);
CheckStore<6>(skips, position, r, mvs[1], dst_reference_offset,
dst_mv);
CheckStore<7>(skips, position, r, mvs[1], dst_reference_offset,
dst_mv);
}
}
}
} else {
for (; x8 < adjusted_x8_end; ++x8) {
const int source_reference_type = source_reference_types[x8];
if (skip_references[source_reference_type]) continue;
MotionVector projection_mv;
// reference_to_current_with_sign could be 0.
GetMvProjection(mv[x8], reference_to_current_with_sign,
projection_divisions[source_reference_type],
&projection_mv);
// Do not update the motion vector if the block position is not valid
// or if position_x8 is outside the current range of x8_start and
// x8_end. Note that position_y8 will always be within the range of
// y8_start and y8_end.
const int position_y8 = Project(0, projection_mv.mv[0], dst_sign);
if (position_y8 < y8_floor || position_y8 > y8_ceiling) continue;
const int x8_base = x8 & ~7;
const int x8_floor =
std::max(x8_start, x8_base - kProjectionMvMaxHorizontalOffset);
const int x8_ceiling =
std::min(x8_end, x8_base + 8 + kProjectionMvMaxHorizontalOffset);
const int position_x8 = Project(x8, projection_mv.mv[1], dst_sign);
if (position_x8 < x8_floor || position_x8 >= x8_ceiling) continue;
dst_mv[position_y8 * stride + position_x8] = mv[x8];
dst_reference_offset[position_y8 * stride + position_x8] =
reference_offsets[source_reference_type];
}
}
}
source_reference_types += stride;
mv += stride;
dst_reference_offset += stride;
dst_mv += stride;
} while (++y8 < y8_end);
}
void Init8bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
assert(dsp != nullptr);
dsp->motion_field_projection_kernel = MotionFieldProjectionKernel_SSE4_1;
}
#if LIBGAV1_MAX_BITDEPTH >= 10
void Init10bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth10);
assert(dsp != nullptr);
dsp->motion_field_projection_kernel = MotionFieldProjectionKernel_SSE4_1;
}
#endif
} // namespace
void MotionFieldProjectionInit_SSE4_1() {
Init8bpp();
#if LIBGAV1_MAX_BITDEPTH >= 10
Init10bpp();
#endif
}
} // namespace dsp
} // namespace libgav1
#else // !LIBGAV1_TARGETING_SSE4_1
namespace libgav1 {
namespace dsp {
void MotionFieldProjectionInit_SSE4_1() {}
} // namespace dsp
} // namespace libgav1
#endif // LIBGAV1_TARGETING_SSE4_1
|